SIEMENS

SIMOTION

SIMOTION ST Structured Text

Programming and Operating Manual

08/2008

Preface

Introduction

Getting Started with ST

ST Fundamentals

Functions, Function Blocks,
and Programs

Integration of ST in
SIMOTION

Error Sources and Program
Debugging

Appendix

> oo o [W N

Safety Guidelines

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert

symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

/\DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

/\WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

/\CAUTION

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will

be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes

in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage

Note the following:

/\WARNING

This device may only be used for the applications described in the catalog or the technical description and only
in connection with devices or components from other manufacturers which have been approved or
recommended by Siemens. Correct, reliable operation of the product requires proper transport, storage,
positioning and assembly as well as careful operation and maintenance.

Trademarks

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this

publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the

information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG Copyright © Siemens AG 2008.
Industry Sector Technical data subject to change
Postfach 48 48

90327 NURNBERG
GERMANY

Preface

Scope

This document is part of the SIMOTION Programming documentation package.

This document is valid for product version V4.1 Service Pack 2 of SIMOTION SCOUT (the
engineering system of the SIMOTION product family) in conjunction with:

® a SIMOTION device with the following versions of the SIMOTION kernel:
- V4.1SP2
- V4.1 SP1
- V4.0
- V3.2
- V3.1
- V3.0

® The relevant version of the following SIMOTION Technology Packages, depending on the
kernel

— Cam

— Path (kernel V4.1 and higher)

— Cam_ext (kernel V3.2 and higher)

— TControl

— Gear, Position and Basic MC (only for kernel V3.0).

This document describes the syntax and implementation of the SIMOTION ST Structured
Text programming language for this version of SIMOTION SCOUT. It also includes
information on the following topics:

e ST Editor and Compiler with program example
e Data storage and data management on SIMOTION devices
® Options for diagnosis and troubleshooting

The scope of the SIMOTION ST programming language may contain new syntax elements
compared to earlier versions. These have only been tested using the current version of the
SIMOTION kernel and are released only for this kernel version or higher versions.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 3

Preface

Conversion of existing projects to the current SIMOTION SCOUT version

It is possible to upgrade existing projects to the current version of SIMOTION SCOUT and
the SIMOTION ST programming language. In some cases, recompilation using the current
version of the compiler can change the version identifiers in the data storage areas of the
programs, thus resulting in deletion and initialization of all retentive and non-retentive data
on the SIMOTION device. In exceptional cases, minor changes to the program source files
may also be required.

If new syntax elements of the SIMOTION ST programming language are used on a
SIMOTION device with an older version of the SIMOTION kernel, the compiler issues a
warning (version V3.2.1 and higher of the SIMOTION kernel). If these syntax elements are
used anyway, the project can be stored in the old project format, but can no longer be
converted using the compiler of an older version of SIMOTION SCOUT.

Information in this manual

The following is a list of chapters included in this manual along with a description of the
information presented in each chapter.

¢ Introduction (Chapter 1)
o Getting Started with ST (Chapter 2)

Requirements for creating programs and a sample program
e ST Basics (Chapter 3)

Elements of the ST programming language, variable and data type declarations,
statements

® Functions, Function Blocks and Programs (Chapter 4)

Programming and call of the program organization units (POU)
® Integration of ST in SIMOTION SCOUT (Chapter 5)

Behavior of variables, access to inputs and outputs, libraries, preprocessor
e Error Sources and Program Test (Chapter 6)

Information on error sources, efficient programming, and program testing
e Appendices

— Formal Language Description (Appendix A.1)

— Compiler Error Messages and Remedies (Appendix A.2)

— Template for Example Unit (Appendix A.3)
® |ndex
If you want to get started immediately, begin by working through Chapter 2.

SIMOTION ST Structured Text
4 Programming and Operating Manual, 08/2008

Preface

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in a separate list of references.

This documentation is included as electronic documentation with the supplied SIMOTION
SCOUT.

The SIMOTION documentation consists of 9 documentation packages containing
approximately 80 SIMOTION documents and documents on related systems (e.g.
SINAMICS).

The following documentation packages are available for SIMOTION V4.1 SP2:
e SIMOTION Engineering System

e SIMOTION System and Function Descriptions

e SIMOTION Diagnostics

e SIMOTION Programming

e SIMOTION Programming - References

e SIMOTION C

e SIMOTION P350

e SIMOTION D4xx

e SIMOTION Supplementary Documentation

Hotline and Internet addresses

Technical support

If you have any technical questions, please contact our hotline:

Europe / Africa

Phone +49 180 5050 222 (subject to charge)

Fax +49 180 5050 223

Internet http://www.siemens.com/automation/support-request
Americas

Phone +1 423 262 2522

Fax +1 423 262 2200

E-mail mailto:techsupport.sea@siemens.com
Asia / Pacific

Phone +86 1064 719 990

Fax +86 1064 747 474

E-mail mailto:adsupport.asia@siemens.com

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 5

Preface

Note

Country-specific telephone numbers for technical support are provided under the following
Internet address:

http://www.siemens.com/automation/service&support

Calls are subject to charge, e.g. 0.14 €/min. on the German landline network. Tariffs of other
phone companies may differ.

Questions about this documentation

If you have any questions (suggestions, corrections) regarding this documentation, please
fax or e-mail us at:

Fax +49 9131- 98 63315
E-mail mailto:docu.motioncontrol@siemens.com

Siemens Internet address

The latest information about SIMOTION products, product support, and FAQs can be found
on the Internet at:

® General information:
— http://Iwww.siemens.de/simotion (German)
— http://www.siemens.com/simotion (international)
® Product support:
— http://support.automation.siemens.com/WW/view/en/10805436

Additional support
We also offer introductory courses to help you familiarize yourself with SIMOTION.

Please contact your regional training center or our main training center at D-90027
Nuremberg, phone +49 (911) 895 3202.

Information about training courses on offer can be found at:

www.sitrain.com

SIMOTION ST Structured Text
6 Programming and Operating Manual, 08/2008

Contents

L (=1 7- Vo7 3PP 3
1 111 oo 1 T (T o PP UPRR 15
1.1 High-level programming [aNQUAGEuviiiiiiiiiiicceee et e e e e e e e e e e e snnree e 15
1.2 Programming language with technology commands ..o 15
1.3 EXECULION TEVEIS ...ttt e e ettt e e e e e e st e e e e eeeeeeaeeeaannes 15
1.4 ST editor with tools for writing and testing programs............ccoiiiiii e 16
2 Getting Started With ST ... e e e e e e e ees e s seaaee saeeeenannneenaaneenan 17
21 Integration Of ST N SCOUT ... e e ebre e e ee e e 17
211 Getting to know the elements of the Workbench...............ueeiviiiiiiiiiii e 19
2.2 Requirements for program Creationoccueieiiiiiiiee e e 20
23 Working with the ST editor and the COmMPIlEr ... 21
2.3.1 INSEIrt ST SOUICE i@ ..ottt e e e et ee e e e e e e e ee e e saneeeeeaeeeaannes 21
23.2 Opening an existing ST SOUICE ilccoiiiiiiii e e 23
2.3.3 Changing the properties of an ST SOUrCe fil€cooiiiiiiiii i 23
234 Working With the ST @ditOr........ooiiiiiieiie e e e e e e e e enees 25
AR TR S TSV o = > Qoo [0 4 1o Vo TSRS 25
B S B L= To T [o o T PP PRTPPR 26
A T B T) o (o] 1) - PSR 27
2.3.4.4 Settings Of the ST €ILOroviiiiii e e e e e e e e e e e e e e rrrees 29
2.3.4.5 Indentations @nd tADS..........ooiiiiiiiiii e e 30
2.3.4.6 Folds (Show and hide DIOCKS)uuuiiiiiiiiiieiiieiie ettt e e eee e e et e e e sreeeeenees 32
2.3.4.7 Display Spaces and tabsooiiiiiiiiiiii e a e e e e e e 35
2.3.4.8 Changing the font size in the ST editor...........ooiiiiiii e e 36
A T B =1t G (=Y« SRS 37
2.3.4.10 USE DOOKIMAIKSuveiitiieitiie ittt ettt ettt et sb et ebe e e bt sar e aan sare e nar e e eneeennes 39
2.3.4.11 AUtOMALtiIC COMPIETION.......uiiieiiiiiii ettt e s e s e s e seeeeeaeaeee seeeeeeaeananannn 40
2.3.4.12 Other help for the ST €AIOroooi i e 42
2.3.4.13 Using the command lIDrary ... e e 42
P22 Tt 7 S S I = 1] (o (o Yo | 0¥ | SRR 43
2.3.5 Starting the COMPIIEToeeiie e e e e e e e saaae s e e anreeeeaaee s 44
2.3.5.1 Help for the €rror COIMECHONociii i e e e e e e e e e e e e ernrees 44
2.3.6 Making settings for the COMPIIETooiiiii e e 44
2.3.6.1 Global COMPIlEr SEHINGS....cci it e e e e 45
2.3.6.2 Local COMPIIEr SEHHINGScoiiiiiiieiiii e et e ee e e e e 46
2.3.6.3 Meaning Of WarniNg ClaSSES.couuuiiiiiiiieeiii ettt e st e e e e bbe e e e anbe sebeee e enees 49
2.3.6.4 Display of the COmMPIlEr OPLIONScocuiiiiiiiee e e e e e e e e e e e nnreees 49
2.3.7 Know-how protection for ST SOUICE filESoiiiiiiiiieee e e 51
2.3.8 Making preprocessor definitioNS e e 51
23.9 Exporting, importing and printing an ST SoUrce file ... 53
2.3.9.1 Exporting an ST source file as a text file (ASCII)........oooiii e 53
2.3.9.2 Exporting an ST source file in XML formatcoovuiiiiiiiiiiiiiiie e e 53
2.3.9.3 Importing a text file (ASCIl) as an ST SOUICe file........ccoiiiiiiiiiiie e e 54
2.3.9.4 Importing XML data into ST SOUICE filESuuiiiii it e 54

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 7

Contents

2.3.9.5 Printing @n ST SOUICE fil€ciiiiiiiiiiiiie ettt et e et e e e sntees eeeesraeaeanns 54
2.3.10 Using @n eXternNal @dItOreoiiiiiiie e ae e e e 55
2311 ST SOUICE fil€ MENUSeeiiiiiieee ettt e e e e e s ee e e e e e st eee e e e e e s e snssaneeaee eeenaeeaannnes 57
2.3.11.1 ST SOUICE fil€ MENUeeiiiiieee ettt e e e s e s ee e e e e e s neeae e e e e e sesnsnaeee snnneeeeaeeaannnes 57
2.3.11.2 ST source file CONEXE MENU........cooiiiiiiiiii e e 58
24 Creating @ SAMPIE PrOGIrAM.......ccii i iiie et e e e et e et e e e et e e e et e e e etee e e e nnteeeesnbeeeeennseee e aeennnes 59
241 =0 [T =T 0 =Y o] £ SR 59
242 Opening or Creating @ PrOJECT........uuii i e e 60
243 Making the hardware KNOWNcoo i s 61
244 Entering source text with the ST editor..........cc.uvviiiiiiiiie e 62
2441 FUNCtions Of the EAItOr..........ooiiiiiiiiii e e e et e e e e nnee srreeeesnreeeeane 63
2.4.4.2 Source text of the SAMPIE PrOGramMccuiiii it e et e e s enteee eeeeans 64
245 Compiling @ SAMPIE PrOGIaMoiii et e e e e et e e e e e e e st e e e e e e e e aanneeeeeaeeeaannn eeeenns 64
2451 Starting the COMPIIET ... ettt ra e e e sbe e e e e ente saeeeeesbeeeeaans 64
P R T A o g = Ter 1T I =Ty (o] £ TSRS 65
2.4.5.3 EXaMPIe Of ITOr MESSAGESuuuviiiiiee e i ittt e eee e e et e e e e e et e e e e e s e st s e e eaeeeesesataeeaaaeesnaaeeeeaanns 65
246 RuNNing the Sample Program.... ...t e et e e e e eeeeee s 66
2.4.6.1 Assigning a sample program to an execution level ..o 66
2.4.6.2 Establishing a connection to the target system............coooiii e 67
2.4.6.3 Downloading the sample program to the target systemcccociiiiiiiii 69
2.4.6.4 Starting and testing the sample Programcooo oo e 70
3 RS I W g o E=T 4101 = RS 71
3.1 Language deSCriPtiON MESOUICESeiiii ittt e e e et e e e e e e re e e e e e e e eeeas 71
3.1.1 YY1 =Y Qo [E=Te | =1 o I TSP PP PPP 71
3.1.2 BIOCKS iN SYNTaX AIaQIamMS.coiiiiiiieiieee ettt e et e e e hee e e nees 72
3.1.3 Meaning of the rules (SEMANTICS)ciiiiiiiiiiee e e e e eeaaeas 72
3.2 Basic elements of the 1anguage.............ceo i e 73
3.2.1 S e g = 1= Tor () = Y PRSP 73
3.2.2 L [T 11T =T o T SR 73
3.2.2.1 RUIES fOr IENTIFIEISeeiieiie e et e et e e e e e e s ee e e e e e ssnneee sannnreeeeeeeaannne 73
3.2.2.2 EXamPles Of IdENTITIEISooie i e e e e e e e e s e ee reeeeeaeeaeanne 74
3.2.3 ReServed Identifiersoi i e 75
3.2.3.1 Protected IdeNtfIErSocuiiii it e e ean s eraee e e sreeaeane 76
3.2.3.2 Additional reserved identifiersc.ooiiiiiiii e e e raee e 81
3.24 Numbers and Boolean ValUESoooii e e e e e eeeee s 82
I Sy B 111 (=Y 1= = RSP URUTPR 82
3.2.4.2 FIloating-pOint NUMDETSccciiiiieiie e e e e e e e e e st re e e e e e s e ssabeeaaee reeeaeeaeanes 83
I S B b (o o] 1= o TSSO ERRRN 83
3.2.4.4 BOOIEAN VAIUES.......eeieeie ettt ettt et e e e e ettt e e e e e e e neeee e e e e e e e nnbee sannreeeaeeeaannne 84
3.2.4.5 Datatypes of NUMDEIScooiiii e e e 84
3.2.5 (07 g F= 1= Tor T g (4 oo RO PRSP 85
3.3 Structure of an ST SOUCE filE......coviiiiiiii e e e e e e e e 86
3.3.1 SHAEEMENES ...t e 87
3.3.2 1070)0 010011 | PSR 88
3.4 =Y =T Y 0 1= S TP 89
3.4.1 Elementary data tyYPesooiiiiiii e e 90
3.4.1.1 Elementary dat@ tyPeseeei i e e sbaee e 90
3.4.1.2 Value range limits of elementary data types.........ccooeiiiiiii e 92
R o I T 1= =T = 1o F=) = T Y/ 1= PR SURR 92
3.4.1.4 Elementary System data tyYPesSooov i e 93
3.4.2 User-defined data tYPeSeeiiiiiiiee e e 94
3.4.2.1 User-defined data tyPesooo i ee e 94
SIMOTION ST Structured Text

8 Programming and Operating Manual, 08/2008

Conftents

3.4.2.2 Syntax of user-defined data types (type declaration)ccceeviiiii e 95
3.4.2.3 Derivation of elementary or derived data types ... 96
3.4.2.4 Derived data type ARRAY ... e e e e 97
3.4.2.5 Derived data type - ENUMEIator........coouiiiiiiiiee et e 99
3.4.2.6 Derived data type STRUCT (StHUCLUIE)........ccuuiiiiii ettt e e e 100
3.4.3 Technology Object data tYPEScoooi e e 101
3.4.3.1 Description of the technology object data types ... 101
3.4.3.2 Inheritance of the properties for aXesoui e e 103
3.4.3.3 Examples of the use of technology object data typesccccoiiiiiiiiii e 103
3.4.4 SYSIEM A8 TYPES ..o e e e e e an e e e 104
3.5 Variable deClaration ... i e e 105
3.5.1 Syntax of variable declaration...............c.coo i e 105
3.5.2 Overview of all variable declarations e 106
3.5.3 Initialization of variables or data types ... e 107
3.54 (70T 0153 =1 o1 £ S 111
3.6 Value assignments and @XPreSSIONSccocueiiiiiiiiiie ittt 112
3.6.1 Value @SSIGNMENTS....oi it e e et e e e e e et e e e e e e e aan e e e e e nneeeas 113
3.6.1.1 Syntax of the value asSignmMENt...........c.ooo i e 113
3.6.1.2 Value assignments with variables of an elementary data type..........cccoociiiiiiii i, 114
3.6.1.3 Value assignments with variables of the STRING elementary data typecccccevviieninnen. 114
3.6.1.4 Value assignments with variables of a bit data type...........cccoveeeiii i, 116
3.6.1.5 Value assignments with variables of the derived enumerator data typecccecoeveiicinnenne. 117
3.6.1.6 Value assignments with variables of the derived ARRAY data typeccccecceveviieneiiieeeee, 118
3.6.1.7 Value assignments with variables of the derived STRUCT data typecooeeeereiiiiiiiineen. 118
3.6.2 [y (o (=TT (o] = F PRI 119
3.6.2.1 RESUIt Of @N @XPrESSIONeviiiiiiiie i e e e e e e e e e et r e e e e e e s e e e e e nnreees 120
3.6.2.2 Interpretation order of an EXPreSSION..........cciiicuiiiiiie e e e s 120
3.6.3 (0] 0121 £ g Lo [P UP SRRSO 121
3.64 ArthMEtiC @XPreSSIONS ...ttt eeeeaeeaanns 122
3.6.4.1 Examples of arithmetiC @XPreSSIONScoiuiiiiiiiie e e 124
3.6.5 Relational @XPreSSIONSoii ittt e b e e et e e e e aaaeeeea 125
3.6.6 Logic expressions and bit-serial EXPreSSiONScc.vuuviiiiiieiiiccieee e 127
3.6.7 101V 0Tl] o= = 1 (o] =SOSR 129
3.7 LO70) a1] r= 1 (=10 1T o RSP S 130
3.71 L] €= 1 (=0 0 =T o USSR 130
3.7.2 L7 NS] R = (= 0 =T o | SR 131
3.7.3 FOR StateMENT ... et e s 134
3.7.3.1 Processing of the FOR statement.............oooooiiiiiiii e e 134
3.7.3.2 Rules for the FOR StatemeEntcooo it ee e 135
3.7.3.3 Example of the FOR statement.......... ..o e 135
3.7.4 LA I =] = 1 (=0 0 =T o 136
3.7.5 REPEAT STat@MENT ...ttt e e e e e e e e e e e e snntereeaaeeseeaaeenanns 137
3.7.6 EXIT StatemMENt ... e s 138
3.7.7 RETURN StatemMeNnt ..ot e e e e e e ee e e e e 138
3.7.8 WAITFORCONDITION Statementc.eieiiiieie et 139
3.79 L B IO] =1 (=] 0 0= o S 140
3.8 Data tYPE CONVEISIONSeiiiiiiiii ettt et e ettt e et e e e saee e e e sabe e e e aabbeeeesnbeeeesbee sareeeens 141
3.8.1 Elementary data type CONVEISION...........uuiiiiiie it e e e e e e eaan e 141
3.8.1.1 Implicit data type CONVEISIONS.......coiiiiiieeie et e e et e 142
3.8.1.2 EXxplicit data type CONVEISIONS.ooiiiiiiiiii e e e et e 144
3.8.2 S T0 o o1 (=T a g T=Y ol =T YA eTe] g VZ=Y =3 o o - TSR 145

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 9

Contents

10

Functions, Function Blocks, and Programs..........cccccciiiiiieiiiiineeen s ceciriee e seeeee e e seee e e s es s sene s s sasans 147
4.1 Creating and calling functions and function BIOCKScooiiiiiiiiiic e 147
411 DefiniNg FUNCHONS ... e e e e 148
4.1.2 Defining fuNCHON DIOCKSooiiieiiie e e e e 149
4.1.3 Declaration section of FB and FCoooiiiiiiiiiie et e 149
4.1.4 Statement section of FB and FC..........oouiiiiiiiii ettt e 151
415 Call of functions and function bIOCK CallSooo e 153
4.1.5.1 Principle of parameter transfer......... .o e 153
4.1.5.2 Parameter transfer to input parameters ... 153
4.1.5.3 Parameter transfer to infout parametersoccuuiii i 154
4.1.5.4 Parameter transfer to output parameters (for FB Only)..........cccoviiiiiiiiiie e 155
4.1.5.5 Parameter aCCESS tIMES....cooi ittt e e e e e et e e e e e e e nreeees sareeeeeaeas 156
4.1.5.6 CalliNg @ FUNCHON......coiiiiiii et e rab e re e e eabe e e e eanees 156
4.1.5.7 Calling function blocks (iNStance CallS)cooi i 157
4.1.5.8 Accessing the FB's output parameter outside the FB............cooiiiiiiiiiiii e 159
4.1.5.9 Accessing the FB's input parameter outside the FB............cccooooiii e, 159
4.1.5.10 Error sources in FB CallScooieiiiiieiee e e e e 159
4.2 Comparison of functions and function bIOCKS ... 161
421 Description Of @XamMIPIE.......oooii et e e e nnenneeeeeas 161
422 Source file With COMMENTSeiiiii e e e e e e s e e e enns 162
4.3 [o Te] =1 4 1= SRR 164
44 (o] (=TS (0] 1= TSP PR PPEPRPPTRRSSSRSRPRPPIRS 166
Integration of ST in SIMOTION ... e s e e e s s e e e e samneeas 169
5.1 SOUICE fil@ SECHIONS ...ttt et e e e e e e e e e e e enae e e e e e e e eeeeaeeeannns 169
511 Use of the Source file SECHONSeiiiiiii e e e e eeeee s 169
LSt I P B [0 =Y o = oY= i o o RS R 170
5.1.1.2 Implementation SECHONcoo i e e rraaaaaa s 171
5.1.1.3 Program organization UnitS (POUS)cc.coiiiiiiiiiiiiiiiii et e e nneee e eeas 171
5.1.1:4 FUNCHONS (FCS) ..ttt ettt sttt ettt s bt e e e s s e enbe e e e sneeee s 172
5.1.1.5 FUNCHON DIOCKS (FBS) ..ciiiiiiiiiiiiiie ittt sttt e e e e s nnneeeas 173
ST I G T o (oo =T o USRI 174
Lot Pt O A b ¢ o] (=111 (o] o - TSSO PRPR 174
5.1.1.8 Declaration SECHON..........coi i et a e e e e e e e e e eaeaeeas 175
LT I S TS = =Y .4 1= g1 =T =Y (o o ST 176
5.1.1.10 Data type defiNItioNoocueiiiiiiiie e e 176
5.1.1.11 Variable deCIarationoooo i s e e e e s e e e e e e aeaaee s 177
51.2 Import and export between ST SOUrce fil€Scooiiiiiiiiiiiii e 179
LSt 7 B U 1 o1 o =T o 1T S SPRPTR 179
5.1.2.2 Interface section of an exporting UNit...........oooiiiiiiiiiiiiir e e 179
5.1.2.3 Example of an exporting UNIit ... e e e e e e eeeeeeeas 181
5.1.2.4 USES statement in an importing UNit...........cooiiiiiiiiii e s 181
5.1.2.5 Example of an importing UNit..........ooueiiiiiii e e 183
5.2 Variables in SIMOTION.ooiiiiiie ettt e st e e st e e e anseeeesnseeeeanne snnneeas 184
5.21 RV = T E= o] = o ¢ To o = I PSPPI 184
Lot Ot O U 1o 11 A= = 1][SRR 186
5.2.1.2 Non-retentive UNit variabIeso e 187
5.2.1.3 Retentive Unit VariabIeS..........oo it e e 188
5.2.1.4 Local variables (static and temporary variables)...........ccccceveiiiiiiiiiie e 189
5.2.1.5 StaliC VANADIEScooieeeie e e e e e e e anaeee s 191
5.21.6 Temporary VariabIes e e ae s 192
5.2.2 Use of global device variabIesooo i 193
523 Memory ranges of the variable types ... 194

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Conftents

5.2.3.1
5232
5.2.3.3
5.2.4

5241
5242
5243
5244
5245
5246
5.24.7
5.2.5

5.3
5.3.1
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.34
5.3.4
5.3.4.1
5.34.2
5343
5.34.4
5.3.4.5
5.3.4.6
5.3.5

5.4

5.4.1
5.4.2
543

5.5
5.5.1
5.5.2

5.6
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.2
5.6.2.1
5.6.3
5.6.3.1

5.7
5.7.1
5.7.1.1
571.2
5.7.2

5.8

Example of memory areas, valid as of Kernel V3.1 ... 196
Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)........... 199
Memory requirement of variables on local data stack (Kernel V3.0 and below) 199
Time of the variable initialization........... ..o e 200
Initialization of retentive global variables ... 201
Initialization of non-retentive global variables ..o 202
Initialization of local variabIesooo e e 204
Initialization of static program variables...............cooii 204
Initialization of instances of function bIOCKS (FBS)ccoociiiiiiiiiii e 205
Initialization of system variables of technology ObjJectScccoveeveeiiiicii e 206
Version ID of global variables and their initialization during download................ccccveviiienenee. 207
Variables and HMI EVICEScooo i e e 208
Access to inputs and outputs (process image, 1/0 variables)...........ooooiiiieiiiiiciiee e 211
Overview of access to iNPuts and OULPULSeeiiiiiiiiiiii e 211
Important features of direct access and process image acCess........ccoovvueeeiriieeeiiiee e e, 212
Direct access and process image oOf CyCliC tasKS..........uuuuiiieiiiiiiiiiiie e 214
Rules for I/0 addresses for direct access and the process image of the cyclical tasks............ 216
Creating /O variables for direct access or process image of cyclic tasks...........ccccceeriieenns 217
Syntax for entering 1/O addreSSESooi i 219
Possible data types of I/O variables ... 220
Access to fixed process image of the BackgroundTaskccccoeeeiiiciiiiiie e, 220
Absolute access to the fixed process image of the BackgroundTask (absolute Pl access)......221
Syntax for the identifier for an absolute process image accessccccevvceveeeiieeeiciie e 222
Symbolic access to the fixed process image of the BackgroundTask (symbolic Pl access).....223
Possible data types for symbolic Pl @CCESS.......cccoiiiiiiiiiiie e 224
Example of SYMDOIIC Pl @CCESSuueiiiiiiiiiiiiii ettt e e eeaa s 224
Creating an 1/O variable for access to the fixed process image of the BackgroundTask.......... 225
ACCESSING 1/O VANEDIEScooiiiiiee e e e 226
USING IDFAMIES ...ttt ettt et e e e e bt e e be e e e sbeeeeaans 227
LO7o] gl o]l [TaTe JR= 1 1 o] =T YRS 227
Know-how protection for IDraries. ... e e 229
Using data types, functions and function blocks from libraries............ccccccveiiiiiiiiiiee e, 230
Use of the same identifiers and NAMESPACES.............eveiveiiiiiiiiiiieee e 231
Use of the Same identifierscooiiiiiiiiie et e e ee srneeeeens 231
I P2 T 1= 0 F= Lo PSSR 233
= T=T4 =T ot - | - USROS 237
CroSS-TefErenCe liISt.......ocueiiiieie e e 237
Creating @ Cross-referenCe liSt..........uueiiiiiiiiii e e 237
Content of the cross-reference list...........coocuiiiii i e 238
Working with @ cross-reference list...........oooiiiiioii e 239
Program SITUCLUIEcooieiie ettt et e ettt e e st e e e ente e e e eeesneeeeeans 239
Content of the program StrUCIUIEoo i s 240
COdE AHMDULIES ... et e 241
Code attribute CONTENESeiiiiiiiiee e e e ee e e s eaeneeeeennnaeens 241
Controlling the preprocessor and compiler with pragmasccccoiieeiiiiiiie e 242
(7o al o] I aTe Tr=T o] (=T o] oot - o] PSS 243
Preprocessor StatEMENT i i e e 244
Example of preproCessor StatemeENtsoooiiiii i 246
Controlling compiler with attributesccuoiiiiii e s 247
Jump statement and [@DEl............ooooiiiiii e e 250

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 11

Contents

12

Error Sources and Program Debuggingcc.uuiiiririieree e eesme e se e see e s s e e s 251
6.1 Notes on avoiding errors and on efficient programming ... 251
6.2 Program debUGGINGcoe ettt e e e e e e 252
6.2.1 Modes for program tESHINGooueiiiii e e e 252
6.2.1.1 Modes of the SIMOTION EVICESeeiiiiiiiiiiiie ettt e 252
6.2.1.2 Important information about the life-sign MoNitoring.........ccccooeeie i 254
6.2.1.3 Life-sign monitoring ParameEtersoooiiiiiiiiie e s 256
6.2.2 SYMDOI BIOWSET ... ettt et sb et e e st e e e s eeeabreeeens 257
6.2.2.1 Properties of the SYymMbOI DrOWSEToooiiiiiiii e 257
6.2.2.2 USINg the SYMDOI DrOWSETuviiiiiieiiiecee e e e e e e e e s e e e e raaeeaaeas 257
6.2.3 Monitoring variables in watCh table ... 261
6.2.3.1 Variables in the watCh tablecooo e e 261
6.2.3.2 USING WALCN taDIES ..o e e 261
6.2.4 L o7 |- 0 T8 (U o PR RRR 263
6.2.4.1 Program run: Display code location and call pathcccoiiiiiiiii 263
6.2.4.2 Parameter call StaCk Program FUNccciiiiiiie e e e e e e e e e e e e e e eeaaeas 264
6.2.4.3 Program rUN T0O0IDATooiiiei ettt e e e e e e e e e e e e e eeeaae s 264
6.2.5 Program STAUSooiiii i e e s 265
6.2.5.1 Properties of the program Status............ooo e 265
6.2.5.2 Using the Status Program ... et e 266
6.2.5.3 Call path for program STAtUS............ooiiiiiiiiieee e e e e rraareaa s 268
6.2.5.4 Parameter call path status programi....... ... 270
6.2.6 BrEaKPOINTS ...eeiiiiiiiiiiieeeee ettt e e e e e e e e e e e ee et aetataaaaaaaaaaaaaee tarnrnrnrararann 271
6.2.6.1 General procedure for setting breakpoints............oooo i 271
6.2.6.2 Setting the debUg MOUEoooiiii e e e e 271
6.2.6.3 Define the debug task GroUPceiieiiiiiiiiiiiee e e e e e e arreea s 273
6.2.6.4 Debug task group ParameEtersocoi i 275
6.2.6.5 Debug table Parameter e e ae s 276
6.2.6.6 Setting breakpOints i e 276
6.2.6.7 Breakpoints tOOIDANc.eiiie e e 278
6.2.6.8 Defining the call path for a single breakpoint.............cccciiiiii e e 279
6.2.6.9 Breakpoint call path / task selection parametersccoccceiiiiee e 281
6.2.6.10 Defining the call path for all breakpointsooiiiiiiiiii e s 282
6.2.6.11 Call path / task selection parameters of all breakpoints per POUcccccooviiiiiiiiiee e 284
6.2.6.12 Activating DreakpOintSoiiiiiiii e e 285
6.2.6.13 DispPlay Call StACK.........cooiiiieiee e e e 287
6.2.6.14 Breakpoints call stack parameter...........cc.uvviiiiiiiiii i 288
6.2.7 TTACE ettt et E et b e h et re e nar e 289
LY o] 1) o [PP 291
A.1 Formal Language DeSCrIPHONcoiiiiiiieee e e 291
A.1.1 Language deSCriptioN MESOUICESuuuiiiiiiiei ittt e e e e e e nee e e e nnee e 291
A.1.1.1 Formatted rules (IEXICAl FUIES)........cooi i e 291
A.1.1.2 Unformatted rules (SYNtacCtiC FUIES)cocuriiiiiiieiie e eeea s 293
A.1.2 Basic elements (IErMINQAIS)ccuiiiiiiiie e e eeeenees 294
A.1.2.1 Letters, digits and other characters........ ... e 294
A.1.2.2 Formatting characters and separators in the rules ... 294
A.1.2.3 Formatting characters and separators for constantscccccoiiii e, 296
A.1.2.4 Predefined identifiers for process imMage @CCESSccocuriiiiieiiiciiieiee e a e 297
A.1.2.5 Identifiers of the TaskstartinfO............ocuiiiiiiii e e 297
YN B S @] T=1 = | (o = TSSO TRRRPOP 298
) I A TS Y=o IR Yo o L 299
A1.3 RUIES ...ttt et e e e et e et e ettt e seeeeaeeeemteeemseeeneeenseeeanee eeeneeeanneeanneeans 307
I T O [=Y o113 RS 307

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Conftents

A.1.3.2 Notation for constants (litErals)ovcuiiii i e sreee e 308
N G TR T O o2 10 =Y o1 £ OSSR 316
A.1.3.4 Sections Of the ST SOUMCE fil€oceiiiieiiieie e e eee e e e 317
A.1.3.5 Structures of ST SOUIMCE filES.....coiiii i e e e e e e eeeee e e e annes 318
A.1.3.6 Program organization units (POU)............ooiiiiiiiii i a e enn e 319
A.1.3.7 DeClaration SECHONS.uuuuuiiiiiii e bbb st e te e rereaeaee eeaeaeaeaeanaaan 321
A.1.3.8 Structure of the declaration bIOCKS.............oooii e e 323
N IR R T B = = I Y/ 1= ST PSR OPPPPPPUPPROt 330
A 1.3.10 SEAtEMENT SECHON ..ottt e et e e e e e st e e e e e e seneeeeee snnreeeeaeeeannnes 335
A.1.3.11 Value assignments and OPErationS............coeuiiiieiiiiiiiiiiii e e e e e e re e e e e e e sean e e eans 336
A.1.3.12 Call of functions and function bIOCK CallScoooiuiiiiiiiiiii e e, 343
A.1.3.13 CoNntrol StAtEMENTScoiii it e e e et e e e e e e et ees carreeeaaeeaaaanes 345
A2 Compiler Error Messages and REMEIESeeiiiiiiiiiiiiii e 350
A.2.1 Fl& @CCESS EITOIS......eiiiiiee ettt ettt e e e e ettt e e e e e et e e e e e e e e s steaeeeaeesaansseeeee nrneneeaeesannnes 350
A.2.2 RS Tor= 0] 0 1= =Y o] S 350
A23 Declaration €rrors iN POUcoiiiiiiii ettt e ettt e e e bt e e e snbeeeesne srneeeeeans 351
A24 Declaration errors in type declarationo e 352
A25 Declaration errors in variable declarations ... 353
A.2.6 o SR T =Y o] £ =TS (o] o PSSR 354
A27 Syntax errors, errors iN @XPreSSIONuii i it iee e atee e et e e s e e e s e e s abeeeeean e eenees 357
A.2.8 Error when [iNKiNg @ SOUICE fil€.........cooiiiiiiiii e e e 358
A.2.9 Errors while loading the interface of another UNIT or technology packagecccccceeveeennee. 358
A.2.10 Implementation reStrCHONSuuuuiiiiiii et enee e e e eeae e as 360
N7 B VAT = o o 11 T OSSP 361
N 2 [1o 02 =1 1 (o] o TSSO 365
A.3 Template for EXample UNit.........oooiiiiiiie e e e et ae e e e e e e e e e ereees 367
A.3.1 Preliminary infOrmMation ... e e e e e e e e e e e ereaaeeaanes 367
A.3.2 Type definition in the INtErfaceoooiiii e e 368
A.3.3 Variable declaration in the interface ... 369
A34 IMPIEMENTALION. ... ettt ettt e e bttt e e sttt e e e bt e beeeeabeeeeaan 371
A.3.5 T T2 1 o SRS 372
A.3.6 FUNCHON DIOCK ...t ettt ettt e ettt e e e bt e e e anbe e e e snee sabeeeeanneeeeanns 373
A.3.7 oo =T o o P EUTR 374
A.3.8 Notes on INItIAliZatioNcoooii e e 375
0 = PSP 377

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 13

Introduction 1

In addition to conventional open and closed-loop control tasks, today's automation systems
are increasingly required to handle data management functions and complex mathematical
calculations. ST (Structured Text) is specially designed for these tasks. Standardized to IEC
61131-3 (German standard DIN EN-61131-3), this programming language makes your job
as a programmer easier.

1.1 High-level programming language

ST is a high-level, PASCAL-based programming language. This language is based on the
IEC 61131-3 standard, which standardizes programming languages for programmable
controllers (PLC). ST is based on the Structured Text part of this standard.

Using a high-level language like ST to program control systems offers the user a wide range
of possibilities, for example:

® Data management
® Process optimization

o Mathematical/statistical calculations

1.2 Programming language with technology commands

In addition to IEC 61131-3 compliance, the SIMOTION ST programming language also
contains commands for SIMOTION devices, motion control and technology.

Technology objects represent a technological functionality, e.g. positioning an axis or
assigning parameters for an output cam. Technology commands are language commands
provided by the technology objects. Such commands may be used, for example, to activate
camming or to control motion sequences, for example, in order to position an axis.

1.3 Execution levels

The SIMOTION execution system provides different execution levels (cyclic, synchronous,
time-controlled, alarm-controlled and sequential) for optimal support of the various tasks
involved in creating user programs.

SIMOTION SCOUT is the engineering system of the SIMOTION product family. ST is the
high-level language for creating user programs; in ST, you can develop user programs for
the various execution levels.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 15

Introduction

1.4 ST editor with fools for writing and festing programs

1.4

16

The execution of user programs can be time-driven if you want them to run synchronously
with the system clock or a defined time cycle. They can be interrupt-driven if they are to start
and run once in response to a particular event. Alternatively, they can run sequentially or
cyclically at the round robin execution level.

ST editor with tools for writing and testing programs

An easy-to-use text editor is provided for creating programs.

The ST compiler converts the edited program into executable code and indicates any syntax
errors, specifying the program line and the cause of the error.

SIMOTION SCOUT provides test functions for testing ST programs. You can test and
visualize your programs online.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST 2

This chapter uses a simple example to describe how to write a program, compile it into
executable code, run it, and test it.

2.1 Integration of ST in SCOUT

The program environment for ST comprises the following components:

e An editor for creating programs, consisting of functions (FC), function blocks (FB), and
user-defined data types (UDT), etc.

® A compiler for compiling the previously edited ST program into executable machine code

® The program status for assisting your search for logical program errors in the running
program

e A detail view, in which, for example, error messages of the compiler are displayed. An
important tab of the detail view is the Symbol browser, where you can monitor and
change variables.

The individual components are easy to use. They are integrated directly in the SIMOTION
SCOUT workbench.

For more information about the operation of the workbench and its tools, refer to the
SIMOTION SCOUT Configuration Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 17

Getting Started with ST
2.1 Infegration of ST in SCOUT

SVK SIMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]
B Project ST sourcefile Edit Inserk Target svstem Wiew Options Window Help _|5’|5|

H_ Compler as|@| w| o] a2l BBle ||| X2l | Sl @il | |ualutal®s |2 | <] | 23]|| B2
EE T =l -

| @] 1wz =]

—

— 4 outputWar : BYTE := 1; // auxiliary tag d
Program Status ~ =TEM -l 5 END_WAR

L= - & PROGRAN Flash:

{5~ GLOBAL DEVICE VARIABLE 7 LEND INTERFACE

] ARES 8 Editor

¢-_] EXTERMAL ENCODERS g IMPLEMENTATION

#1-_1 PATH OBJECTS 10 % PROGEAM Flash

: —l CAMS 11 = IF counterWar »= 500 THEN 7/ in every 500th pasz

-] TECHNOLOGY 12 (0E6E = outputVar; A4 set output byte

ED EROGR""MS 13 outputWar := ROL (in := outputVar, n := 1);
‘ *|_'| Insert 5T prng_ram 1a [(* // rotate bit in byte
-#7 Insert MCC unik 15 - one digit to the left*)

-® Insert DCC charts 16 counterVar := 0; // reset counter
% Insert LAD/FED unit 17 END IF:
B 8Tt 15 counterVar := counterVar + 1 // increment counter
-] LIBRARIES 19 = | END_PROGRAM

-] MONITOR =l [lz0 “EWD_IMPLEMEWTATION 5
‘I I _)I_ LI_I :

Project | Cormand library | ST_1 |

4
Lyl | teszage ;I
Error ST_1[19) : G001 :Statement expected : Befare EMD_PROGRAM
Errar Errar on:
Errar Swrtax error [ret = Oxbe03000k0) Detail view
Infarmation EMD of compilation of 'ST_1" at 18:58:49
Infarmation Carnpilation of ST_1: 4 Errar(z], 0w arming(s] =
| 3

Symbiol braveser E Compile/check output |
Line 18, column 37 [CPS611(PROFIBLS) Offline mode RUM

Figure 2-1 Development environment of ST

SIMOTION ST Structured Text
18 Programming and Operating Manual, 08/2008

Getting Started with ST
2.1 Infegration of ST in SCOUT

211 Getting to know the elements of the workbench

The workbench represents the framework for SIMOTION SCOUT. Its tools allow you to
perform all the steps necessary to configure, optimize and program a machine for your
application.

B SIMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]

Project ST source file Edit Insert Target syskem View Options Window Help Menu bar =18l =]
= :
| D] || B | @) o] | 21| BRI | X1 B]]t ol ol i |
oolpbars
J @l"l"”*‘ﬁf‘l” |m| |E|E|HEIHI<NDHRE[> j EIHI LIHE”
: - 4 outputVar : BYTE := 1:; // auxiliary tag ;I
[=-={EE C240 ;I 3 L END VAR
----- Bl] EECUTION SYSTEM g PROGRAN Flash:
8= 10 7 LEND INTERFACE
- [E= GLOBAL DEVICE WARIABLE g Working area
(-] AXES 3 IMPLEMENTATION
(-1 EXTERNAL ENCODERS na PROCRAM Flash
I:|"'—‘| PATH OBJECTS 11 =] IF counterVar »= 500 THEN // in ewvery 5S00th pass
-] CAMS 1z %(BEZ := ogutputWar; // set output byte
-] TECHMOLOGY 13 outputVar := EOL (in := outputVar, n := 1):
EID PROGRAMS 14 [H {* // rotate bit in byte
-7 Insert 5T program 15 F one digit to the left¥)
Project navigator 16 counterVar := 0; // reset counter
e 17t END_IF;
i %] Insert LADJFED unit . 15 counter¥ar := counterWar + 1; // increment counter
Ee=B ST 19 | END PROGRAM |
PR Flashi) < 20 “ENp 1mPLEMENTATION -
Ial... ITRD ADTES
1| | _>|_I 4 | og
Project | Command library | sT_1 | @ coan |
=
C240.5T 1: Immediate control | -
Hame Data type Status value Display format Svmb lb— -
1 countervar INT 286 |DEC r ymbot browser
2 outputyar BYTE 00100000 Bk rl

=i S—
. Alarmz == Symbal browser E Compiledcheck. output IE Target system output I 5.’:5 Diagniostics avervigw I

Line 1, column 1 [cPS611(PROFIELIS) [Online mode [[rom
Figure 2-2 Workbench elements

The workbench contains the following elements:
® Menus

Menus contain menu commands with which you can control the workbench and call tools,
etc.

® Toolbars

You can execute many of the available menu commands by clicking the corresponding
button in one of the toolbars.

® Project navigator

The project navigator displays the entire project and its elements (e.g. CPU, axes, programs,
cams) in a tree structure.

o \Work Area

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 19

Getting Started with ST

2.2 Requirements for program creation

This window allows you to perform specific tasks either independently (by programming) or
using wizards (by configuring).

® Detailed view

The detail view displays additional information about the elements selected in the project
navigator, e.g. all global variables for a program or the Compile/Test Output window.

2.2 Requirements for program creation

This section describes the general conditions you will need to meet before writing a program.
You will find detailed information in the SIMOTION SCOUT Configuring Manual and the
SIMOTION Motion Control function descriptions.

Add or open a project

The project is the highest level in the data management hierarchy. SIMOTION SCOUT
saves all data which belongs, for example, to a production machine, in the project directory.

This means that the project therefore brackets together all SIMOTION devices, drives, etc.
belonging to one machine.

Once you have created a project, you can:
® Configure hardware

® [nsert and configure technology objects

Configuring hardware

Within the project, the hardware used must be made known to the system, including:
e SIMOTION device

® Centralized I/O (with 1/0O addresses)
® Distributed 1/O (with I/O addresses)

A SIMOTION device must be configured before you can insert and edit ST source files.

Insert and configure technology objects

The functionality of axes, output cams, etc. is represented in SIMOTION by technology
objects (TOs).

You cannot program technology objects using system functions and access their system
variables until you have inserted and configured them.

SIMOTION ST Structured Text

20 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2.3 Working with the ST editor and the compiler

In this section, you will learn how to use the ST editor and the compiler.

2.3.1 Insert ST source file

ST source files are assigned to the SIMOTION device on which they are to run.

Proceed as follows

1

2
3
4

5.

6
7

SIMOTION ST Structured

. Open the appropriate SIMOTION device in the project navigator.
. Select the PROGRAMS folder.

. Select the menu Insert > Program > ST source file.

. Enter the name of the ST source file.

Names for program source files must satisfy the rules for identifiers: They are made up of
letters (A ... Z, a ... z), digits (0 ... 9) or single underscores (_) in any order, whereby the
first character must be a letter or underscore. No distinction is made between upper and
lower case letters.

The permissible length of the name depends on the SIMOTION Kernel version:

— As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.

— Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.

Names must be unique within the SIMOTION device.

Protected or reserved identifiers (Page 75) are not allowed.

Existing program sources (e.g. ST source files, MCC units) are displayed.

If necessary, select further tabs to make local settings (only valid for this ST source file):

— Compiler tab: Local settings of the compiler (Page 46) for code generation and
message display.

— Additional settings tab: Definitions for preprocessor (Page 51)
. Select the Open editor automatically checkbox.
. Confirm with OK.

Text

Programming and Operating Manual, 08/2008 21

Getting Started with ST

2.3 Working with the ST editor and the compiler

Insert ST program

Hame:

Gerneral |E0mpi|er| Additional zettings

Authar: I

Wersion: I

Enaw-how I
protection;

Ewigting Programsz

KFQuelle_1 [LADAFED unit)
MCCOuelle_1 [MCLC unit]
MCCOuelle_2 [MCC unit]
ST_1[ST pragram)
ST_2(5T program]

Camment:

¥ Open editor automatically

Cancel | Help |

Figure 2-3 Insert ST source file

NOTICE

With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of
the program source file name may not be detected until a consistency check or a download
of the program source file is performed!

22

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

23.2 Opening an existing ST source file

Proceed as follows
1.

o > 0N

Open the subtree of the appropriate SIMOTION device in the project navigator.
Open the PROGRAMS folder.

Select the desired ST source file.

Select the Edit > Open object menu command.

Only for ST source files with know-how protection:

If the user with the login assigned to the ST source file has not yet logged on:
— Enter the corresponding password for the displayed login.

You can now open additional ST source files to which the same login is assigned without
having to re-enter the password.

Note
You can also double-click the required ST source file to open it.

233 Changing the properties of an ST source file

Proceed as follows
1.

Under the SIMOTION device, open the PROGRAMS folder.

2. Select the desired ST source file.
3.
4. If necessary, select further tabs to make local settings (only valid for this ST source file):

Select the Edit > Object Properties menu command.

— General tab: General details for the ST source, e.g. timestamp of the last change and
the storage location of the project (see figure).

— Compiler tab: Local settings of the compiler (Page 46) for code generation and
message display.

— Additional settings tab: Definitions for the preprocessor (Page 51) and display the
compiler options (Page 49) as specified for the current settings of the compiler.

— Compilation tab: Display of the compiler options (Page 49) for the last compilation of
the ST source.

— Object address tab: Set the internal object address of the ST source. The object
addresses of the other program sources are displayed.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 23

Getting Started with ST

2.3 Working with the ST editor and the compiler

ST program propetrties K E3

Mame: |ELMRE

Gerneral |E0mpi|er| Additional zettings | Compilation | Object addressl

Author: I
Wersion:
Eut dink 4 I d I !
created |V4.1 J0.0-47.03.00,00
Know-how
pratection: I

Time gtamp

Lazt modified on; Monday, March 05, 2007 8:21:41 PM

Froject memony location; D:\SiemenshStepPedprofprold_1

Conment: :I

Cancel | Help |

Figure 2-4 Properties of an ST source file

Changing the name of an ST source file

24

You can also change the names of the ST source file here. To do this, click the [...] button.

Names for program source files must satisfy the rules for identifiers: They are made up of
letters (A ... Z, a ... z), numbers (0 ... 9) or single underscores (_) in any order, whereby the

first character must be a letter or underscore. No distinction is made between upper and
lower case letters.

The permissible length of the name depends on the SIMOTION Kernel version:
® As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.

® Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.
Names must be unique within the SIMOTION device.

Protected or reserved identifiers (Page 75) are not allowed.

Existing program sources (e.g. ST source files, MCC units) are displayed.

NOTICE

With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of

the program source file name may not be detected until a consistency check or a download
of the program source file is performed!

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

234 Working with the ST editor
The ST editor makes it easier for you to work with the ST source file, variables and
technology objects through the following operator controls:
® Syntax coloring
® Drag&drop
® Menu commands and shortcuts
B ST - [C240.5T_1] M=l E3
1 INTERFACE
2 VAR _GLOBAL
3 counterVar @ INT := 1; // counter wariable
4 output¥ar @ BYTE := 1; // auxiliary tag
5 END_V4R
& FROGRAM Flash;
7 END_INTEREFACE
g
9 IMPLEMENTATION
10 FROGEAM Flash
11 = IF counterWar »>= 500 THEN // in every S500th pass
12 (0B62 1= outputVar; A4 set output byte
13 output¥ar := ROL (in := outputWar, n := 1];
14 [[* rotate bit in hyte
15 - one digit to the left %)
16 counterVar := 0; // reset counter
17 END_IF;
15 counterVar := counterWar + 1; // increment counter
19 N END_FPROGEAM
20 -END_IMFLEMENTATION
L >
Figure 2-5 Opened ST source file in the ST editor
See also
Shortcuts (Page 27)
2.3.41 Syntax coloring

The ST editor represents language

o Magenta: Numbers, values

® Green: Comments

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

elements in different colors:

Blue: Keywords and compiler built-in functions

Black: Technology objects, user code, variables

25

Getting Started with ST

2.3 Working with the ST editor and the compiler

2342

Drag&drop

26

Drag&drop

A drag-and-drop operation (dragging while keeping the left mouse button pressed) enables
you to:

Move selected text areas within an ST source file or to another opened ST source file.
Copy names of variables from the symbol browser to the ST source file.

Copy names (e.g. of technology objects, functions or function blocks) from the project
navigator to the ST source file.

Copy system functions from the command library to the ST source file.

To copy names of variables from the symbol browser to the ST source file:

1.

Select the entire line of the desired variable in the symbol browser. To do this, click the
line number at the start of the line.

Press the left mouse button and drag the line number to the desired position in the ST
source file.

The name of the selected variable is inserted in the ST source file.

To copy the name of an element (e.g. a technology object, a function or a function block)
from the project navigator to the ST source file:

1.
2.
3.

Select the Project tab in the project navigator.
Select the element in the project navigator.

Press the left mouse button and drag the element to the desired position in the ST source
file.

The name of the selected element is inserted in the ST source file.

To copy a system function from the command library to the ST source file:

1.
2.
3.

Select the Command Library tab in the project navigator.
Select the system function in the command library.

Press the left mouse button and drag the system function to the desired position in the ST
source file.

The system function is inserted in the ST source file with its parameters.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2343 Shortcuts
The ST editor also provides keyboard shortcuts. Commands can currently also be called via
the Edit and ST editor menus:

Table 2-1 ST Editor keyboard shortcuts

Shortcuts Description

DEL Delete the selected area (Menu Edit > Delete)

F2 Jump to the next bookmark

Arrow key Move the cursor

SHIFT+F2 Jump to the previous bookmark

SHIFT+Arrow key Select line of text

CTRL+A Select all text (Menu Edit > Select All)

CTRL+B Save and compile ST source file (menu ST source > Accept and compile)
CTRL+C Copy the selected area to the clipboard

(Menu Edit > Copy)

CTRL+D Duplicate Row

CTRL+F Find text in ST source file (Menu Edit > Find)

CTRL+H Replace text in ST source file (Menu Edit > Replace)

CTRL+L Copy line

CTRL+V Paste clipboard contents (Menu Edit > Paste)

CTRL+X Cut the selected area (Menu Edit > Cut)

CTRL+Y Redo the last action (Menu Edit > Redo)

CTRL+Z Undo the last action (Menu Edit > Undo)

CTRL+space Automatic completion

CTRL+F2 Set or delete bookmarks

CTRL+F4 Close ST source (Menu ST source > Close)

CTRL+F7 Activation and deactivation of the Program Status function (menu ST source >

Program Status on/off)

CTRL+SHIFT+F2

Delete all bookmarks in the ST source code

CTRL+SHIFT+F3

Arrange windows, tile horizontally

CTRL+SHIFT+F5

Arrange windows, tile vertically

CTRL+SHIFT+F8

Format selected area

CTRL+SHIFT+F9

Move cursor to the start of the current or higher-level block

CTRL+SHIFT+F10

Move cursor to the end of the current block

CTRL+SHIFT+F11

Move cursor to the start of the higher-level block, 1st level

CTRL+SHIFT+F12

Move cursor to the start of the higher-level block, 2nd level

CTRL+ALT+B Display bracket pairs in the current ST source file

CTRL+ALT+C Folding: Hide all blocks of the current ST source file

CTRL+ALT+D Folding: Display all blocks of the current ST source file

CTRL+ALT+F Folding: Display or hide folding information in the current ST source file
CTRL+ALT+I Display indentation level in the current ST source file

CTRL+ALT+L Display or hide line numbers in the current ST source file.
CTRL+ALT+R Folding: Display all subordinate blocks

SIMOTION ST Structured Text
Programming and Operating Manual,

08/2008

27

Getting Started with ST

2.3 Working with the ST editor and the compiler

Shortcuts Description

CTRL+ALT+T Folding: Display/hide block

CTRL+ALT+V Folding: Hide all subordinate blocks

CTRL+ALT+W Display or hide spaces and tabs in the current ST source file

CTRL+ADD (numeric keypad)

Increase font size in the current ST source file

CTRL+MINUS
(numeric keypad)

Decrease font size in the current ST source file

CTRL+DIV (numeric keypad)

Change font size in the current ST source file to 100%

ALT+SHIFT+Arrow key

Select text by column

ALT+SHIFT+L

Change selected text to upper case

ALT+SHIFT+U

Change selected text to lower case

Table 2-2 Combined keyboard and mouse actions

Keyboard Mouse Description

Single left click in text Set cursor

Doubile left click in text Select word

Press left button and drag mouse Select line of text

Single left click on line number Select line
SHIFT Single left click in text Select line of text
CTRL Single left click on line number Select all text (Menu Edit > Select All)
CTRL Single left click in bookmark column Set bookmarks
CTRL Turn mouse wheel Change font size
ALT Press left button and drag mouse Select text by column
ALT+SHIFT Single left click in text Select text by column

SIMOTION ST Structured Text

28 Programming and Operating Manual, 08/2008

Getting Started with ST
2.3 Working with the ST edjtor and the compiler

2344 Settings of the ST editor

Proceed as follows:
1. Select the menu Tools > Settings.
2. Select the ST editor / Scripting tab.
3. Enter the settings.
4. Click OK or Accept to confirm.

Dowrload | CPUdownlbad | L&D/FEDedior | MCCedior | Sawe
Whorkbench I Rights I Acocess point I Compiler | ST edtor £ scripting I ST extemnal editor
¥ Display line numbering —Fonts
¥ Feplace tabs with blanks Font
ICnurier Mew j

[+ Tab width
Fornt zize

[Tool tip dizplay for function parameters m

v &utomatic indent/outdent

[+ Falding active

— Status format
& Binay " Hexadecimal

[Display indent level

¥ Display pairs of brackets

Cancel Apply Help

Figure 2-6 ST Editor / Scripting

The settings also apply to the script editor.

The table below contains a description of the individual parameters.

Table 2-3 Parameter settings ST Editor / Scripting

Parameter Description
Display line numbering If active, the line numbers are displayed.
See: Other ST editor tools (Page 42).
Replace tabs with blanks You select here how text indentation is performed (for the

automatic indentation or by pressing the Tab key):

e If active: By adding the appropriate number of space
characters ($20).

e If inactive: By adding the tab character ($09).
See: Indentations and tabs (Page 30).

Tab width Number of characters skipped by a tab.

See: Indentations and tabs (Page 30).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 29

Getting Started with ST

2.3 Working with the ST editor and the compiler

Parameter

Description

Tooltip display for function parameters

When active, the parameters are displayed as tooltips for
the functions.

Automatic indent/outdent

If active, for the text input, source file sections and blocks
are indented automatically by the set tab width.

See: Indentations and tabs (Page 30).

Folding active

If active, the column with the folding information is displayed
at the left-hand side next to the edit area.

You can then hide blocks in an ST source file so that only
the first line of the block remains visible.

See: Fold (show and hide blocks) (Page 32)

Display indentation level

If active, you can optically highlight the indent and outdent
for blocks using vertical help lines (in accordance with the
set tab size).

See: Indentations and tabs (Page 30).

Display bracket pairs

If active, the associated bracket of the pair that belongs to
the bracket where the cursor is located will be found and
optically highlighted.

See: Other ST editor tools (Page 42).

Font Font for the display of the text in the ST editor. All non-
proportionally spaced fonts installed on the PC are available
for selection.

Font size Font size (in pt) for the display of the text in the ST editor.

See: Change the font size in the ST editor (Page 36).

Status format

Format in which the variable values are displayed for the
program status (for ST editor only).

See: Properties of the program status (Page 265).

2345 Indentations and tabs

Specify tab width

The standard tab width for all ST sources is specified in the settings of the ST

editor (Page 29).

This setting is used for all ST source files opened subsequently.

Indent using tabs or spaces

You can select in the settings of the ST editor (Page 29) how the text will be indented (e.g.
with the automatic indent and outdent when the Tab key is pressed):

e By adding the appropriate number of space characters ($20).

e By adding the tab character ($09).

This setting is used for all ST source files opened subsequently.

30

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

Automatically indent and outdent blocks

Format selection

The ST editor recognizes blocks introduced with a keyword and terminated with another
keyword, e.g.:

® INTERFACE / END_INTERFACE

e |IMPLEMENTATION / END_IMPLEMENTATION

® Declaration blocks (e.g. TYPE / END_TYPE, VAR / END_VAR)
® Program organization units (e.g. PROGRAM / END_PROGRAM)
e Control statements (e.g. IF / END_IF, FOR / END_FOR)

During the text input, the ST editor can automatically indent text within blocks by the tab size.
The end line of the block will be outdented automatically.

This function is activated in the settings of the ST editor (Page 29).

Note

This setting affects only the behavior during the text input. It does not have any effect on
existing text in the ST sources.

You can use this function to force the blocks (see above) in an existing text to be indented by
the tab size in accordance with their hierarchy. The number of the leading spaces or tabs will
be changed:

® As specified by the current tab size of the ST source file.

® As specified by the current setting for the type of the indent (with tabs or spaces).
Follow these steps:

1. Select the text area in the ST editor that you want to format (see Select text (Page 37)).
2. Press the CTRL+SHIFT+F8 key combination.

NOTICE

Leading tabs or spaces will be replaced in a line only when the formatting changes their
number.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 31

Getting Started with ST

2.3 Working with the ST editor and the compiler

Display indentation level

2.34.6

32

You can optically highlight the indent and outdent for blocks using vertical help lines (in
accordance with the set tab size).

B ST - [C240.5T_1]

1

LI [R o [O S I e |

£l
10
11
12
13
14
15
16
17
15
13
20

L« |

INTERFACE
WAR_GLOBAL
counterVar @ INT
output¥ar : BYTE :
END_VAR.
PROGRAM Flash:
END_INTERFACE

1; /4 counter wariahle
1; /4 audiliary tag

IMPLEMENTATION
% PROGRAM Flash
= IF counterWar »>= 500 THEN // in every S500th pass
(0B62 1= outputVar; A4 set output byte
output¥ar := ROL (in := outputWar, n := 1];
= [* rotate bit in hyte
one digit to the left %)
counterVar := 0; // reset counter
- END_IF;
counterVar := counterWar + 1; // increment counter
- END_PROGEAN

-END_IMFLEMENTATION

M=l 3

Figure 2-7 ST source with visible indent aid

You can activate or deactivate this function:

® For the active ST source

Press the CTRL+ALT+I key combination.

® For all open ST sources:

— Activate or deactivate the Display indentation level checkbox in the ST editor

settings (Page 29).

Folds (show and hide blocks)

You can hide blocks in an ST source file so that only the first line of the block remains
visible. This increases the legibility during the editing or reading of an ST source file.

A block is introduced with a keyword and terminated with another keyword, e.qg.:
INTERFACE / END_INTERFACE
IMPLEMENTATION / END_IMPLEMENTATION
Declaration blocks (e.g. TYPE / END_TYPE, VAR / END_VAR)
Program organization units (e.g. PROGRAM / END_PROGRAM)
Control statements (e.g. IF / END_IF, FOR / END_FOR)

Block comment (* / *)

How to recognize that a block is displayed:

e When the column is shown with the fold information (at the left-hand side next to the
editing area), a minus character appears next to the first line of the block.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

How to recognize that a block is hidden:

e \When the column is shown with the fold information (at the left-hand side next to the
editing area), a plus character appears next to the first line of the block.

® A hyphen is displayed below this line.

B ST-[C240.5T_1] M=l E3
1 INTERFACE
2 VAR GLOBAL
3 counterVar : INT = 1: // counter wariable
4 outputWar : BYTE := 1; // auxiliary tag
5 END VAR
& PROGRAM Flash:
7 END_INTERFACE
g
9 IMPLEMENTATION
10 % PROGRAM Flash
11 = IF counterWar == 500 THEN // in ewvery 500th pass
12 (0E6E = outputVar; A4 set output byte
13 outputWar := ROL (in := outputVar, n := 1);
4 [[* rotate bit in byte
15 o one digit Lo the left *)
16 counterVar := 0; // reset counter
il END_IF:
15 counterVar := counterVar + 1; 7/ increment counter
19 o END_PROGEATT
0 ~END_IMFLEMENTATION
4] | i
Figure 2-8 ST source for which all blocks are shown
B ST-[C240.5T_1] M=l E3
1 INTERFACE
2 VAR GLOBAL
3 counterVar : INT = 1: // counter wariable
4 outputWar : BYTE := 1; // auxiliary tag
5 END VAR
& PROGRAM Flash:
7 END_INTERFACE
g
9 (| IMPLEMENTATION
10] FROGERAI Flash
11 IF counterWar »== 500 THEN // in ewvery 500th pass
15 counterVar := counterVar + 1; 7/ increment counter
19 END_PROGEATT
0 EII]D_IHPLEI‘[EIIITATIDII]i
| | o

Figure 2-9 ST source with hidden IF block (including block comment)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 33

Getting Started with ST

2.3 Working with the ST editor and the compiler

Proceed as follows:

34

How to show or hide the column with the fold information (at the left-hand side of the editing
area):

® For the active ST source:
— Press the CTRL+ALT+F key combination.
® For all open ST sources:

— Activate or deactivate the Folding active checkbox in the settings of the ST
editor (Page 29).

How to hide a block:
e (Click on the minus character in the column with the fold information.

Only the first line of the block remains visible. All subsequent lines of the block (including
lower-level blocks) will be hidden.

How to show a block:
® C(Click on the plus character in the column with the fold information.

All subsequent lines of the block will be shown. Lower-level blocks will be displayed in the
state they had when they were hidden.

Note

After opening an ST source in the editor, all lines of the ST source are visible. All blocks are
shown.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST
2.3 Working with the ST edjtor and the compiler

2347 Display spaces and tabs

You can display spaces and tabs in the ST source files.

B ST-[C240.5T_1F M=l E3
INTERFACE

2 —WaAR_GLOBAL
3 — ——counterVar-: - INT -:=-1;-// counter wariable
4 —% —outputVar- - : BEYTE-:=-1;-// auxiliary tag
& —END_VaR
& ——PROGRAM - Flash;
7 END_INTERFACE
g
a IMPLEMENTATION

10 ——PROGRAM - Flash

11 —| — ——=IF counterWar - -»==-500-THEN-// in-every- S00th-pass

12 — — —3%0B62 - = -outputVar; - - - // set output-byte

13 — — ——outputVar-:=-RB0OL (in-:=-outputWar, n-:=-1):

14 [—s—»—=(* rotate-bit-in -byte

15 F—s—>F—> -one-digit-to- the left-¥)

16 — — ——counterVar :=-0; // -reset-counter-

17 - — ——END_IF:

15 — ——counterVar . :=-counterVar -+ 1;-// increment counter-

19 - —END_PROGEAN

20 ~END_IMPLEMENTATION

| | o

Figure 2-10 ST source file with visible spaces and tabs

Proceed as follows
How to specify whether spaces and tabs are displayed in the active ST source file:
1. Set the cursor in the opened ST source.
2. Press the CTRL+ALT+W key combination.

This setting is not saved when the ST source is closed.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 35

Getting Started with ST

2.3 Working with the ST editor and the compiler

2348 Changing the font size in the ST editor

You can change the font size of the ST source in the editor. The font size of the line numbers
and the size of other display elements (e.g. fold marks, bookmarks) will also be changed.

B ST - [C240.5T 1 *]

11 — IF counterVar >= 50
12 50BBZ 1= output
13 cutputVar := RC
14 (* rotate bit i
15 — cne digit to
16 countervar := (
17 — END TIF;

18 countervar := count
19 — END PROGRAM

20 —END IMPLEMENTATION =
B B oy

Figure 2-11 Increased size display of the ST source

Proceed as follows
You can change the font size:
® For the current ST source

® For ST source files to be opened subsequently

How to change the font size for the current ST source (alternative):
® Press the CTRL key while moving the mouse wheel
e Press concurrently the CTRL key and one of the following keys on the numeric block:
— ADD (+) to increase,
— MINUS (-) to reduce,
— DIV for 100%.

How to change the font size for ST sources to be opened subsequently:
1. Open the settings for the ST editor (see Settings of the ST editor (Page 29)).
2. Enter the required font size.

This setting will used for all ST sources that will be opened subsequently. It does not affect
the currently opened ST sources.

SIMOTION ST Structured Text
36 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2349 Select text

Selecting lines of text
How to select lines of text:
e With the mouse:

— With pressed left mouse button, scan the text to be selected.

or
e With the keyboard or the mouse:
— Place the cursor with the arrow keys of the keyboard or with the mouse at the start of
the text to be selected.
— Press the Shift key while placing the cursor at the end of the text to be selected.
B ST-[C240.5T_1 *] =] E3
1 INTERFACE
z VAR_GLOBAL
3 counterVar : INT = 1; // counter wvariahle
4 output¥ar @ BYTE := 1; // auxiliary tag
5 END_VAR
6 PROGRAM Flash;:
7 END_INTERFACE
&
9 IMFLEMENTATION
10 % PROGRAM Flash
11 = IF counterWar »>= 500 THEN // in every S500th pass
12
13 r 1= ROL (in :
14 [* rot n by
15
16
17
15 counterVar := counterVar + 1; // increment counter
19 END_PROGRAN
20 -END_IMPLEMENTATION
] | _'I

Figure 2-12 ST source with selected lines of text

Selecting columns of text
How to select columns of text:
® With the mouse:

— Press the Alt key while keeping the left mouse button pressed, scan the text to be
selected.

or

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 37

Getting Started with ST

2.3 Working with the ST editor and the compiler

e \WVith the keyboard or the mouse:

— Place the cursor with the arrow keys of the keyboard or with the mouse at the start of
the text to be selected.

— Press the ALT+SHIFT key combination while placing the cursor at the end of the text
to be selected.

B ST -[C240.5T_1 *] M=l E3
1 INTERFACE
WAR_GLOBAL
counterVar @ INT := 1; // counter wariable
output¥ar @ BYTE := 1; // auxiliary tag
END_VAR.
PROGRAM Flash:
END_INTERFACE

LI [R o [O S I e |

10 FROGEAM Flash

9 IMPLEMENTATION
11 = IF counterWar »=

Bl THEN // in every 500th pass

12 (0B62 1= outplidbar: A4 set output byte

13 outputVar := M8 (in := outputWar, n := 1);

14 - [* rotate hithkky hyte

15 - one digit thjeehe left %)

16 counteryar = /4 reset counter

17 - END_IF:

15 counterVar = cnu@r\?ar + 1; // increment counter

13 - END_PROGEAN

z0 ~ENL_IMPLEMENTATION

KT |

Figure 2-13 ST source with selected columns of text

Selecting a single line
How to select a single line:

® Click with the left mouse button next to the line number of the appropriate line.

Selecting the complete text
How to select the complete text (alternatives):

® Press the CTRL key while clicking with the left mouse button in the column with the line
numbers.

® Press the CTRL+A key combination.

SIMOTION ST Structured Text
38 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2.34.10 Use bookmarks

You can set bookmarks in the ST editor. This allows you to jump to specific selected lines
within the ST source file.

B ST-[C240.5T_1 #] M=l E3
1 INTERFACE
Z WAR_GLOBAL
3 counterVar @ INT := 1; // counter wariable
4 output¥ar @ BYTE := 1; // auxiliary tag
5
G
7

END_VA4R
FROGRAM Flash;
END_TNTERFACE
]
9 (] %IHPLEI{EHI'ATIDH

10 PROGRAM Flash

11 IF counterWar »>= 500 THEN // in every S500th pass
12 (0B62 1= outputVar; A4 set output byte

13 oht.put‘i?ar := ROL iin := outputWar, n := 1);
14 [[* rotate bit in hyte

15 - one digit to the left %)

16] counter¥ar := 0; // reset counter

17 - END_IF:

15 counterVar := counterWar + 1; // increment counter
13 - END_PROGEAN

20 ~ENL_IMPLEMENTATION

KIN i

Figure 2-14 ST source with bookmarks

Setting and deleting bookmarks

How to set a bookmark for a line of the active ST source file or to delete an existing
bookmark:

e With the keyboard and the mouse:
— Press the Ctrl key.

— Simultaneously, click with the left mouse button at the right-hand side next to the line
number of the appropriate line.

e \With the keyboard:
— Set the cursor in the appropriate line of the ST source.
— Press the CTRL+F2 key combination.

NOTICE

Bookmarks are not saved when the ST source is closed.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 39

Getting Started with ST

2.3 Working with the ST editor and the compiler

Jump to bookmark

How to jump to the next bookmark within the ST source:

® Press the F2 key.

How to jump to the previous bookmark within the ST source:

® Press the SHIFT+F2 key combination.

Delete all bookmarks

2.3.4.11

40

How to delete all bookmarks in an ST source:
® Press the CTRL+SHIFT+F2 key combination.

Automatic completion

In the ST editor, you can automatically complete identifiers. A selection list with identifiers
that begin with the previously entered characters will be displayed.

B ST - [C240.5T_1 *]

1 INTERFACE
WAR_GLOBAL
i counterVar @ INT
4 output¥ar : BYTE :
5 END_VAR.
&
7
8

FROGEAM Flash;
END_INTEREFACE

1; /4 counter wariahle
1; /4 audiliary tag

1= 1):

9 IMPLEMENTATION
10 % PROGRAM Flash
11 = TE _soamsdsos WMo o BOO THEN // in ewery 500th pass
1z END_FOR d ar; A4 set output byte
13 END_IF [in := outputWar, n
14 [END LAREL J byte
15 B END PROGRAM & left)
15 END_FEPEAT /4 reset counter
17 L END_3¥HC
15 END_T¥PE j rVar + 1; // increment counter
19 END_|
z0 ~ENL_IMPLEMENTATION
] |

M=l 3

o

Figure 2-15 ST editor, automatic completion of an identifier (e.g. END_)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

Proceed as follows
How to automatically complete an identifier:
1. Write the first characters of the identifier (e.g. the letters of a word).
2. Press the Ctrl+space key combination.
The selection possibilities are displayed in a window.

3. Select the required identifier.

Note

If only a single identifier is offered for selection, the selection window will not be opened and
the identifier completed immediately.

Functional description
The following identifiers that begin with the specified character will be offered:
e Keywords of the Structured Text language
® [dentifiers from the command library
® For technology objects including their system variables and configuration data

® |dentifiers of the own ST source:

Program organization units (POU)

Data types

Variables and constants

Structure elements

e |dentifiers from imported program sources

Note

Identifiers from the own ST source and from imported program sources will be displayed
correctly only when the corresponding program source has been compiled.

The display is made context-sensitive, only those types of identifiers that are appropriate at
the associated location of the ST source will be offered:

o Within a declaration block, only data types and keywords

¢ Within a program organization unit (POU), no data types

e For a structure (e.g. var_struct.xx), only structure components

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 41

Getting Started with ST

2.3 Working with the ST editor and the compiler

2.3.4.12

Other help for the ST editor

Display bracket pairs

The two brackets of a bracket-pair can be optically highlighted.

To do this, place the cursor next to a bracket. The editor attempts to find the associated
brackets of the pair and possibly displays both brackets red. This simplifies the recognition of
bracket pairs, in particular for nesting.

How to switch this function on or off:
e For the active ST source:

— Press the CTRL+ALT+B key combination.
e For all open ST sources:

— Activate or deactivate the Display bracket pairs checkbox in the ST editor
settings (Page 29).

This setting is also used for all ST source files opened subsequently.

Show and hide line numbers

2.3.4.13

42

Line numbers can be displayed in the ST editor:
How to switch this function on or off:
® For the active ST source file:

— Press the CTRL+ALT+L key combination.
® For all open ST sources:

— Activate or deactivate the Display line numbers checkbox in the ST editor
settings (Page 29).

This setting is also used for all ST source files opened subsequently.

Using the command library

The command library is a tab in the project navigator. It contains the available system
functions, system function blocks, and operators.

You can drag these elements from the command library to the ST editor window with
drag&drop.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2.3.4.14 ST editor toolbar

This toolbar contains important operating actions for programming:

Table 2-4 ST editor toolbar

Symbol Meaning
gl Program status

Click this icon to start the program status test mode. During the program execution,
you can monitor the values of the variables marked in the ST source.

The following prerequisites are necessary:

1. The program must be compiled with the appropriate compiler option.

2. The project and the program must be loaded into the target system.

3. An online connection to the target system must have been established.
Reclick this icon to end the program status.

See: Using the program status (Page 266).

_| Stop monitoring of the program variables

Click this icon in the program status test mode to stop the monitoring of the program
variables.

See Using the program status (Page 266).

Ll Continue monitoring of the program variables

Click this icon in the program status test mode to continue the monitoring of the
program variables.

See: Using the program status (Page 266).
ﬁl Refresh

Click this icon in the program status test mode to force the updating of the displayed
values. The monitoring of the program variables must have been activated.

See: Using the program status (Page 266).
Insert ST source file

Click this icon to create a new ST source file. The icon is active only when the
PROGRAMS folder where the ST source file is to be saved is selected in the project
navigator.

See: Insert ST source file (Page 21).

i} Accept and compile

Click this icon to transfer the current ST source file to the project and compile into
executable code.

See: Starting the compiler (Page 44).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 43

Getting Started with ST
2.3 Working with the ST editor and the compiler

235 Starting the compiler

Requirement
The ST source file has been opened with the ST editor.

Proceed as follows
1. Click in the window with the ST editor. The dynamic ST source file menu appears.

2. Select the ST source file > Accept and compile menu command.

Note
The ST source file menu is dynamic. It only appears if the window of the ST editor is active.

The compiler checks the syntax of the ST source file. The "Compile/check output" tab of the
detail view displays the successful compilation of the source text or compiler errors. The
error details include: The name of the ST source file, the number of the line in which the
error occurred, the error number and the error description.

2.3.5.1 Help for the error correction
To obtain help during error correction:
® Double-click the error message in the Compile/check output tab of the detail view.

The cursor is placed at the relevant line in the ST source file.

2.3.6 Making settings for the compiler
You can define the compiler settings (compiler options) as follows:

® Globally for the SIMOTION project, valid for all programming languages, seeGlobal
settings of the compiler (Page 45)

® [ocally for an individual ST source within the SIMOTION project, see Local settings of the
compiler (Page 46)

SIMOTION ST Structured Text
44 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2.3.6.1 Global compiler settings
The global setting are valid for all programming languages within the SIMOTION project.

Proceed as follows
1. Select the menu Tools > Settings.
2. Select the Compiler tab.
3. Define the settings according to the following table.
4. Confirm with OK.

Settings E3

Dowrload | CPUdownlbad | L&D/FEDedior | MCCedior | Sawe
Wwhorkbench I Rightz I Access point Compiler | ST editor / zoipting I 5T external editor

— Project optionsg
1

7
I I

<o
Ara
e
U
A
Am

wharning claszes:

v Selective linking

[Permit program status
[Permit language extensions

[Only create program instance data once

Standard setting

™ Display all messages with 'Save and compile all

Mate: Far the changes to take effect, you must zave the project and recompile all

Cancel Apply Help

Figure 2-16 Global compiler settings

Parameter

Table 2-5 Parameters for global compiler settings

Parameter Description

Warning classes Active: In addition to the error messages, the compiler outputs warning messages of the
selected classes.

Inactive: The compiler suppresses the warning messages of the respective class.
See also For meanings of the warning classes (Page 49).

Selective linking' Active (standard): Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.

Use preprocessor? Active: Preprocessor is used (see Control preprocessor (Page 243)).

Inactive (standard): Preprocessor is not used.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 45

Getting Started with ST

2.3 Working with the ST editor and the compiler

Parameter

Description

Enable program status’

Active: Additional program code is generated to enable monitoring of program variables
(including local variables).

Inactive (standard): Program status not possible.
See Properties of the program status (Page 265).

Permit language extensions'

Active: Language elements are permitted that do not comply with IEC 61131-3.
Inactive (standard): Only language elements that comply with IEC 61131-3 are permitted.

Only create program
instance data once

Active: The local variables of a program are only stored once in the user memory of the
unit. The setting is required when a further program is to be called within a program.

Inactive (standard): The local variables of a program are stored according to the task
assignment in the user memory of the respective task.

See Memory ranges of the variable types (Page 194).

Display all messages with
Save and compile alP

Here, you can control the scope of the error log that will be displayed in the workbench's
detail view when you call the Save and compile all command in SIMOTION SCOUT.

Active: A detailed log is created that is similar to that for single compilation of an ST source
file.

Inactive: A compressed error log is created.

1 Local setting also possible, see Local settings of the compiler (Page 46).
2User-specific settings. Valid for all SIMOTION projects that the user processes.

NOTICE

You may have to recompile the project for the settings to take effect.

2.3.6.2 Local compiler settings

Local settings are configured individually for each ST source file; local settings overwrite
global settings.

Proceed as follows

1. Open the Properties window for the ST source file, see Changing the properties of an ST
source (Page 23):

Select the ST source file in the project navigator and select the Edit > Object properties
menu command.

2. Select the Compiler tab.

3. Define the settings according to the following table.
4. Confirm with OK.

46

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

General Cnmpile[lhddilional zettings | Compilation | Object addressl

[lgnore global settings

[™ Suppress warings

) 012 3 4586 7
“Warning classes: Jv| W e

[Selective linking
[Use preprocessor

I Pemit language extensions

I Dnly create program instance data once

¥ Enable OPCHML [load symbols ta BT)

Figure 2-17 Local compiler settings for the ST source file

Parameter

Table 2-6 Parameters for the local compiler settings for the ST source file
Parameter Description
Ignore global settings Affects:

¢ Warning classes

e Selective linking

e Use preprocessor

e Enable program status

e Permit language extensions

e Only create program instance data once

Active: Only the selected local settings apply. The global settings are ignored.

Inactive: The respective global setting can be adopted. The corresponding checkbox is
grayed out.

Suppress warnings

In addition to error messages, the compiler can output warnings. You can set the scope of
the output warning messages:

Active: The compiler outputs the warning messages according to the selection in the global
settings of the warning classes. The checkboxes of the warning classes can no longer be
selected.

Inactive: The compiler outputs the warning messages according to the following selection of
the warning classes.

Warning classes'

Only for Suppress warnings = inactive.
Active: The compiler outputs warning messages of the selected class.
Inactive: The compiler suppresses warning messages of the respective class.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

See also For meanings of the warning classes (Page 49).

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

47

Getting Started with ST

2.3 Working with the ST editor and the compiler

Parameter

Description

Selective linking’

Active: Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Use preprocessor’

Active: Preprocessor is used.
Inactive: Preprocessor is not used.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).
See Controlling the preprocessor (Page 243).

Enable program status'’

Active: Additional program code is generated to enable monitoring of program variables
(including local variables).

Inactive: Program status not possible.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

See Properties of the program status (Page 265).

Permit language extensions'

Active: Language elements are permitted that do not comply with IEC 61131-3.
Inactive: Only language elements are permitted that comply with IEC 61131-3.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

Only create program
instance data once!

Active: The local variables of a program are only stored once in the user memory of the
unit. The setting is required when a further program is to be called within a program.

Inactive: The local variables of a program are stored according to the task assignment in
the user memory of the respective task.

Grey background: The displayed global setting is adopted (only for Ignore global settings =
inactive).

See Memory ranges of the variable types (Page 194).

Enable OPC-XML

Active: Symbol information for the unit variables of the ST source is available in the
SIMOTION device (required for the _exportUnitDataSet and _importUnitDataSet functions,
see the SIMOTION Basic Functions Function Manual.

Inactive: Icon information is not created,

1 Global setting also possible, see Global settings of the compiler (Page 45).

48

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST
2.3 Working with the ST edjtor and the compiler

2.3.6.3 Meaning of warning classes

The table lists the warning classes and their meanings.

Table 2-7 Meaning of warning classes

Warning class Meaning
0 Warnings for unreferenced or unused code sections and data
1 Warnings for hidden identifiers
2 Warnings for data type conversion, e.g. for data change
3 Warnings about set compiler options
4 Warnings about semaphores (potentially faulty functions)
5 Warnings about alarm functions
6 Warnings about constructs in libraries (unit variables declared)
7 Messages of the preprocessor

For the detailed description of the compiler error messages, specify which warning classes
are assigned to the individual warnings (Page 361) and information (Page 365).

2364 Display of the compiler options
You can view for a program source the following:
® The current compiler options using the global or local settings of the compiler.

® The compiler options used for the last compilation of the program source.

Requirement
The Properties window of the program source (Page 23) is open.

Proceed as follows

To display the current compiler options using the global or local settings of the
compiler (Page 44):

® Select the Additional settings tab.

The current compiler options for the program source are displayed. They are valid for a
future compilation.

To display the compiler options used for the last compilation of the program source:
® Select the Compiler tab.

The following are displayed for the last compilation of the program source:

— The version of the used compiler.

— The used compiler options.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 49

Getting Started with ST

2.3 Working with the ST editor and the compiler

Meaning of the compiler options

Compiler option Meaning
-c2 Do not create debug and symbol information.
-C lang_ext "Permit language extensions" active.
-C lang_iec "Permit language extensions" inactive.
-C opcsym "Permit OPC-XML"! active.
-C no_opcsym "Permit OPC-XML" inactive.
-C opcsym "Use preprocessor"! active.
-C no_preproc "Use preprocessor"” inactive.
-C prog_once "Create program instance data only once"! active.
-C prog_multi "Create program instance data only once" inactive.
-D fext Preprocessor definition (Page 51).
-e local? Only local settings act.
-e user? Only global settings act.
No details (default): Global settings will be augmented with local settings.
-I12 Accept the package settings from device or library.
- sel "Selective linking"! active.
-l no_sel "Selective linking" inactive.
-S "Enable program status"! active.
-s_off "Enable program status" inactive.
-W ho_warn "Suppress warnings"! active.
-w all_warn2 Display all warnings.
-w n_off Warning class 7 active'.
-W 77_0n Warning class ninactive!.
Further options Internal options of the SIMOTION compiler.

1 Meaning of the compiler option: see "Local compiler settings (Page 46)".

2 Only when the compiler is called from the command line, e.g. using scripting.

Note

The compiler options can also be specified when the compiler is called from the command
line, e.g. using scripting.

SIMOTION ST Structured Text
50 Programming and Operating Manual, 08/2008

Getting Started with ST
2.3 Working with the ST edjtor and the compiler

2.3.7 Know-how protection for ST source files

You can protect ST source files from access by unauthorized third parties. Protected ST
source files can only be opened or exported as plain text files by entering a password.

For information about how to apply know-how protection, refer to the online help.

Note

If you export in XML format, the ST source files are exported in an encrypted form. When
importing the encoded XML files, the know-how protection, including login and password,
remains in place.

See also

Know-how protection for libraries (Page 229)

2.3.8 Making preprocessor definitions

You can make definitions for the preprocessor (see Control preprocessor (Page 243)) in the
Properties dialog box of the ST source file. This enables you also to control the preprocessor
with ST source files with know-how protection (see Know-how protection for ST

sources (Page 51)).

Making preprocessor definitions in the Properties dialog box

1. Open the Properties window for the ST source file
(see Changing the properties of an ST source (Page 23)):

Select the ST source file in the project navigator and select the Edit > Object properties
menu command.

2. Select the Additional settings tab.
3. Enter the preprocessor definitions (syntax as shown in the following table).
4. Confirm with OK.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 51

Getting Started with ST

2.3 Working with the ST editor and the compiler

Generall Compiler Additional settings |Eompi|atinn|

Preprocessar definitions: [e.g.: _TEST, start=h, "res= 3 + 5"
Im_l,l_define=g_var, my_call=f{mydefine)

Compiler optiohs:

45T -z -C preproc -0 my_define=g_wvar -0 my_call=fmydefing] -w =~
all_warn -l zel -

Figure 2-18 Preprocessor definitions

Table 2-8 Syntax of the preprocessor definitions

Syntax Meaning

ldentifier=fext The specified /identifieris defined and replaced in the ST source file by
Identifier=text’ the specified fext

"dentifier=text" Permissible characters: See table footnote.

If the expression contains blanks (e.g. in the text), the syntax
"Identifier=text”"must be used.

Identifier The specified identifieris defined and replaced in the ST source file by
blank text.

Permissible characters: See table footnote.

Multiple preprocessor definitions are separated by commas: Definition_1, Definition_2, ...
Permissible characters:

e For identifier. In accordance with the rules for identifiers: Series of letters (A ... Z, a ... z), digits
(0 ... 9) or single underscores (_) in any order, whereby the first character must be a letter or
underscore. No distinction is made between upper and lower case letters.

e For fext. Sequence of any characters other than \ (backslash), ’ (single quote) and ” (double
quote). The keywords USES, USELIB and USEPACKAGE are not permitted.

Note

Preprocessor definitions made within an ST source file with pragmas, overwrite the
definitions in the Properties dialog box.

Note the information for preprocessor statement (Page 244)!

SIMOTION ST Structured Text
52 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

239 Exporting, importing and printing an ST source file

An overview is provided here of the export, import and printing of an ST source file.

2.3.91 Exporting an ST source file as a text file (ASCII)

To export an ST source file as an ASCII file:

1.

2.
3.
4.

Open the ST source file (Page 23), if necessary entering the password (for ST source
files with know-how protection (Page 51)).

Make sure that the cursor is in the ST editor.
Select the ST source file > Export menu command.

Enter the path and file name for the ASCII file and click Save to confirm.

The ST source file is saved as an ASCII file; the file name is given the default extension *.st.

Alternatively, you can also proceed as follows:

1.
2.
3.

Select the ST source file in the project navigator.

Select Export from the context menu.

Only for ST source files with know-how protection (Page 51):

If the user with the login assigned to the ST source file has not yet logged on:
— Enter the corresponding password for the displayed login.

You can now export or open additional ST source files to which the same login is
assigned, without having to re-enter the password.

Enter the path and file name for the ASCII file and click Save to confirm.

2.3.9.2 Exporting an ST source file in XML format

Follow these steps to export an ST source file in XML format:

1.
2.
3.

Select the ST source file in the project navigator.
Select the context menu Expert > Save project and export object.
Specify the path for the XML export, and confirm with OK.

An XML file with the ST source file name and a folder with additional associated XML files
are saved in the specified path.

Note

Know-how-protected ST source files can also be exported in XML format. The ST source
files are exported encrypted. When importing the encoded XML files, the know-how
protection, including login and password, remains in place.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 53

Getting Started with ST

2.3 Working with the ST editor and the compiler

2393 Importing a text file (ASCII) as an ST source file
To import an ASCII file as an ST source file:

1. Select the PROGRAMS folder under the appropriate SIMOTION device in the project
navigator.

2. Select the menu Insert > External source > ST source file.
3. Select the ASCII file to be imported, and click Open to confirm.
The dialog box for inserting an ST source file is displayed.

4. Enter the name of the ST source file and select the additional options (see Insert ST
source file (Page 21)).

The ASCII file is incorporated into the current project directory as an ST source file and can
be opened.

2394 Importing XML data into ST source files
Follow these steps to import XML data into an ST source file:
1. If applicable, insert a new ST source file (see Insert ST source file (Page 21)).
2. Select the ST source file in the project navigator.
3. Select the context menu Expert > Import object.
4. Select the XML data to be imported.

The imported XML data overwrites existing data in the selected ST source file. The entire
project is saved and recompiled.

Note

Note that if the XML data to be imported were exported from an ST source file that was
know-how protected, the know-how protection, including login and password, remains in
place while importing the encoded XML files.

23.95 Printing an ST source file
To print an ST source file:
1. Open the ST source file.
2. Make sure that the cursor is in the ST editor.
3. Select the menu Project > Print.

The program is printed with the name and date.

SIMOTION ST Structured Text
54 Programming and Operating Manual, 08/2008

Getting Started with ST
2.3 Working with the ST edjtor and the compiler

2.3.10 Using an external editor

What external editors can be used?

As an alternative to the default ST editor, you can use any other ASCII editor that supports
the following function:

® External programs (for example, compiler) can be called and run on the active window.

In addition, the editor should be capable of highlighting certain text passages of the ST
source file in color (syntax coloring).

Note

If you use an external editor, the dynamic ST source file menu and its entries are not
available. The corresponding toolbar is also inactive.

It must be possible to start compilation of the ST source file from the external editor.

Status Program continues with the ST editor.

Settings for the use of an external editor
The settings are made in the SCOUT workbench:
1. Select the menu Tools > Settings.
2. Select the ST external editor tab (see figure).
3. Activate the Use external ST editor checkbox.
4. Enter the path of the external editor:

— Click Browse... and select the path and file name of the editor.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 55

Getting Started with ST
2.3 Working with the ST editor and the compiler

Settings E3

Dowrload | CPUdownlbad | L&D/FEDedior | MCCedior | Sawe |
Waorkbench I Rights I fccess point I Compiler I ST editor / scripting 5T extemnal editor

¥ Usze external 5T editor

IEI: WProgran Filez\TextPad 44T extPad exe Browse. .

ok | Cancel Apply Help

Figure 2-19 Settings for the use of an external editor

Making settings in the external editor

The following notes are of a general nature. Compare the operator instructions of the
external editor.

1. Configure the path to the ST compiler in the external editor. The compiler is located in the
STEPY7 installation directory s7bin\u7wstcax.exe.

2. Syntax files are supplied for various editors. These enable the editor to highlight text
passages in color (syntax coloring). Copy the syntax file to the relevant directory and
configure the editor accordingly.

Note the following when using an external editor:

/\CAUTION

Close all windows of the external editor before you close a project or exit SIMOTION
SCOUT. Failure to do so could result in loss of data!

SIMOTION ST Structured Text
56 Programming and Operating Manual, 08/2008

Getting Started with ST

2.3 Working with the ST edjtor and the compiler

2.3.11 ST source file menus

2.3.11.1 ST source file menu

Depending on the active application/editor or the mode (ONLINE/OFFLINE), certain
commands are not displayed or cannot be selected. The menu is only displayed if the ST
editor is active in the working area.

You can select the following functions:

Table 2-9 ST Source File Menu

Function Meaning/Note

Close Select this command to close the active ST source file. In the event of changes, you can
decide whether you want to transfer the changed source file to the project.

Characteristics Select this command to display the properties of the active ST source file. Several tabs

are provided to make local settings for this source.
See: Changing the properties of an ST source file (Page 23).

Accept and compile

Choose this command to transfer the current ST source file to the project and compile into
executable code.

See: Starting the compiler (Page 44).

Use preprocessor

As an option, the preprocessor scans an ST source file before compiling and can, for
example, replace character strings in the file, which will then be taken into account during
the compilation. You can specifically execute the preprocessor statements with this menu
command.

Export

Select this command to export the active ST source file as text file (ASCII).
See: Exporting an ST source file as a text file (ASCII) (Page 53).

Program status On/Off

Program status On/Off monitors the current status of the active ST source file. During the
status, the program variable values can be monitored during a program run. The ST editor
is divided into two windows. The right pane displays the current values of the program
variables selected in the ST source file (left pane).

The project and the program must be available in the target system and an ONLINE
connection to the target system must be active.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008 57

Getting Started with ST

2.3 Working with the ST editor and the compiler

2.3.11.2 ST source file context menu
Depending on the active application/editor or the mode (ONLINE/OFFLINE), certain
commands are not displayed or cannot be selected.
You can select the following functions:
Table 2-10 ST source file context menu
Function Meaning/Note
Close Close closes the active ST source file.
Cut Select Cut to remove the selected object and save it to the clipboard.
Copy Select Copy to copy the selected object. It is stored in the clipboard.
Inserting Select Paste to insert the contents of the clipboard at the current cursor position.
Deleting Use Delete to delete the current St source file. All data from the ST source file is
permanently deleted.
Rename Use Rename to rename the current ST source file. Please note that with name changes, it

is not possible to change the referencing to this name and that the new name must
comply with the ST conventions

Save variables

You can save retain, unit and global variables with this menu command. You can save
these variables from the RAM/ROM memory of the target device and store them on a data
medium as XML file. When these variables are restored, they can be written from the data
medium to the RAM/ROM memory of the target device.

Restore variables

You can restore retain, unit and global variables from the previously exported variables
with this menu command. When these variables are restored, they can be written from the
data medium to the RAM/ROM memory of the target device.

Expert

Import object

Import object imports the data of an ST source file from another project which was
previously created with a selective XML export.

Save project and export object

Use Save project and export object to export selected data of the ST source file in XML
format. This data export can then be reimported into other projects.

Accept and compile

Use Accept and compile to save and compile the selected ST source file.

Run preprocessor

As an option, the preprocessor scans an ST source file before compiling and can, for
example, replace character strings in the file, which will then be taken into account during
the compilation. You can specifically execute the preprocessor statements with this menu
command.

Program status On/Off

Program status On/Off monitors the current status of the active ST source file. During the
status, the program variable values can be monitored during a program run. The ST editor
is divided into two windows. The right pane displays the current values of the program
variables selected in the ST source file (left pane).

The project and the program must be available in the target system and an ONLINE
connection to the target system must be active.

Export

Export exports the active ST source file as a file in ST format, e.g. to import the program
to other projects.

Know-how Protection

Set Use Set know-how protection to set know-how protection for ST sources files. The
protected sources can only be opened and modified with the specified log-on and
password.

Deleting Delete know-how protection releases the protected ST source files so that they can be

opened and read without entering a password.

Reference data

58

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Getting Started with ST

2.4 Creating a sample program

Function Meaning/Note

Create Select Create reference data to create the reference data of the selected ST source file.
The reference data contains information about the designators used, with details of their
declaration, application, function calls and the nesting of these.

Display

Cross references

Display cross references displays the cross reference list of the selected ST source file in
the detail view. The reference data must be created before the cross references can be
displayed.

Program structure

Select Display program structure to display the program structure of the selected ST
source file in the detail view. Before the program structure can be displayed, the reference
data must first be created.

Print

Use Print to print the selected ST source file.

Print preview

Select Print preview to preview the page to be printed.

Characteristics Use Properties to display the properties of the active ST source file. This window displays
the name, change date and the storage location.

24 Creating a sample program
In this section, we create a short program to illustrate the steps involved, including starting
and testing. Testing is described in Program test (Page 252).

Function
The Flash program sets a bit in an output byte of your target system and rotates it within this
byte. This causes each bit of the output byte to be set and reset in succession. After the last
bit of the byte, the first bit is to be set again. You can observe the result of the program at the
outputs of your target system.

241 Requirements

SIMOTION ST Structured Text

To create the sample program, you need
® A SIMOTION project and

® A SIMOTION device (e.g. SIMOTION C240) within the project whose output is configured
at address 62.

Programming and Operating Manual, 08/2008 59

Getting Started with ST
2.4 Creating a sample program

242 Opening or creating a project

Projects contain all the information about the hardware and configuration. This includes the
programs you use to control the hardware.

Proceed as follows
If a project does not yet exist, proceed as follows:
1. Select Project in the menu bar.
2. Select New or Open.
3. Specify a name for a new project, and click OK to confirm.
For details, see the online help.

SMOSTMOTION SCOUT = E
Projeck Target swstenn Wisw Options Window Help

| D(e || | || @] ||| x| sl | XXl | %) 2t dalaa]=s 28] | =] | 28 | B
1= e 7 =

|Jzer projects |

Hame | Storage path |
% zt_demo C:“\Program Files\Siemenz\Step7 a7 profhat_demo

[T &dd ta curent multiproject

MHame: Tvpe:
Iploi_eng Im
[" | E Library

Storage location

IE:'\F‘IDgram Filez'Siemens\Stepe7proj Browsze. |

Cancel | Help |

Press F1 ko open Help display. |CF‘561 1{PROFIELIS) LI

Figure 2-20 Creating a new project

SIMOTION ST Structured Text
60 Programming and Operating Manual, 08/2008

Getting Started with ST
2.4 Creating a sample program

243 Making the hardware known

The steps are as follows:
1. Create and configure a new SIMOTION device (e.g. C240 V4.1).
2. Configure an output in HW Config at Address 62.

For more details on steps 1 and 2, refer to the online help.

[L2 Hw Config - [SIMOTION C {Configuration) - proj_eng]

1l RSN oy et ties - 10 - (R0/52.3) == x|
J O = 3~ & Addreszes
[0 UR rputs Bl
Start; IBB Length: 2 [~ Swstem Default
0a7 ndard j
LF2ME
0 CPU 315F-2 PN/DP d
BEROMA CPU AGT-20P
Drice ~ Dutputs LR 318
i CPU 316-2DP
i CPU 3172
Dave Start: |52 Length: 1 [~ Sustem Default CPU 2172 PN/DF
CPU 317F-2
CPU 317F-2 PN/DP
CPU 317T-2DP
CPU 3182
CPU 319-3PN/DP
CPU 319F-3 PN/DP
CPUE14
K CPU C240
230 BaUT 230-28400-0840
tl:l [0 UR 20 BaUT 230284010840
30 BaUT 240-14800-0840
Slat badul 0K | | -8 w0 L
1] E] a1
2 CZ240 GAUT 240-1AAD0-0AAD (V4.1 -0 BaUT 240-14R00-0840
e L5 Ll
Al faipt g
Ea— T st i
g FEREMT & 58 Ball1 240-1A400-0440 - i<|
e e fom peg | pag rae C240 kation Cantraller; 1 Ethernet =
ot B e e e e | |Cannestion; T Combined hP1/DP
’ i S S ~ Connection; 1 DF Connection; 2-tier LI

Press F1 ta get Help. | | [
Figure 2-21 Change in HW Config

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 61

Getting Started with ST
2.4 Creating a sample program

244 Entering source text with the ST editor

Proceed as follows
1. In the project navigator, open the tree for your SIMOTION device (programs are assigned
to the SIMOTION device on which they are to run).
2. Select the PROGRAMS folder and choose Insert > Program > ST source file.

3. Enter a name for the ST source file consisting of up to 128 characters (see figure), e.g.
ST_1, and click OK to confirm the entries.

The ST editor appears in the working area. The ST source file ST_1 is inserted in the
navigator.

4. Enter the source text from Source text of the sample program (Page 64), preferably with
indented lines. To do this, press the TAB key.

The features of the ST editor are described in Working with the ST editor (Page 25); the
structure of an ST source file is described in detail in Structure of the ST source
file (Page 86) and in Source file sections (Page 169).

5. Use comments as often as possible. Enter your comment after the // characters if the
comment fits on one line of text. If the comment extends across several lines, insert it
between character pairs (* and *).

6. Save the complete project with Project > Save.

SIMOTION ST Structured Text
62 Programming and Operating Manual, 08/2008

Getting Started with ST

2.4 Creating a sample program

SMOSTMOTION SCOUT - proj_eng = E
Projeck Edit Insert Target swskem Views Ophions Window Help
| Dl] [T 1]

J J s J [<N fiter> ame: [
=
=8P proj_eng =
----- ™ Create new device General | I:ompilerl Additional settingsl
----- P_‘| Insert single drive unit

£-EE C240
----- B8] EXECUTION S¥STEM futhor. |
S IO Yersion: I—
- [E= GLOBAL DEVICE WARIABLE
-] AXES

-] EXTERNAL ENCODERS

-] PATH CBJECTS Eisting Programs
E

E

q-_] CamM3

d-_] TECHMOLOGY

=1 PROGRAMS

P_'| Insert 5T program

B Insert MCC unit

%) Insert DCC charts

B Treoek | ARUERD i Camment:
[

4]

Froject I Command librany I

¥ Open editor automatically

=
._
Cancel Help

=== Sumbol browser

Press F1 ta open Help display. |cPS611{PROFIBLS) Offline mode [o
Figure 2-22 Naming the ST source file

24.41 Functions of the editor

In addition to simple text input, the ST editor provides the following advanced/convenience
functions for documenting the functionality of your source text:

e Standard Windows user features (for example, Undo with Ctrl+Z or Redo with Ctrl+Y)
e Syntax coloring (different colors for different language elements)

e Source file printout in an appropriate layout with page number, source file name and
printing date

e Export/import of the source file
® Source file archiving (via the project)

A detailed description of the functions is contained in Working with the ST editor (Page 25)
and in Making settings for the compiler (Page 44).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 63

Getting Started with ST
2.4 Creating a sample program

2442 Source text of the sample program

The table shows the source code of the sample program. You need to enter it in the same
way to create executable code.

Table 2-11 Flash sample program

INTERFACE
VAR GLOBAL
countervVar : INT := 1; // counter variable
outputVar : BYTE := 1; // auxiliary tag
END_VAR

PROGRAM Flash;
END INTERFACE

IMPLEMENTATION
PROGRAM Flash
IF counterVar >= 500 THEN // in every 500th pass
$QB62 := outputVar; // set output byte
outputVar := ROL (in := outputVar, n := 1);
(* // rotate bit in byte
one digit to the left¥)

countervVar := 0; // reset counter
END IF;
counterVar := counterVar + 1; // increment counter

END PROGRAM
END IMPLEMENTATION

245 Compiling a sample program

Before you can run or test your program, you must compile it into executable machine code.
The compiler performs this task.

24.5.1 Starting the compiler

Before you can run or test your program, you must compile it into executable machine code.
The ST compiler performs this task.

Start the compiler as follows:

1. Click in the window with the ST editor to display the ST source file menu. This menu is a
dynamic menu and is only displayed if the window of the ST editor is active.

2. Start the compiler by selecting the ST source file > Accept and compile menu command.

SIMOTION ST Structured Text
64 Programming and Operating Manual, 08/2008

Getting Started with ST
2.4 Creating a sample program

2452 Correcting errors

The compiler checks the syntax of the ST source file. The Compile/check output tab of the
detail view displays the successful compilation of the source text or compiler errors. The
error details include: Name of the ST source file, the line number where the error occurred,
the error number and an error description.

Proceed as follows to correct an error in the sample program:

1. Double-click the error message. The cursor is placed at the relevant line in the ST source
file. See Example for error messages (Page 65).

2. Start debugging the first error.
3. Start the compilation operation again.
4. Repeat the entire operation until no more errors are displayed (0 errors).

After a successful compilation, you will have created an application program with the name
flash. This program is displayed in the project navigator below the ST_1 program source file.

2453 Example of error messages

BV STMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]
Projeck ST source file Edit Insert Target syskem View Options window Help _|ﬁ||ﬂ

| DI (B[R] S| &[] ||]| 3Bl | XXl | 5ol | 2] dalaal®s |27 | <] | B3 | B
I = = T e M =) 2

4 outputVar : BYIE := 1; // auxiliary tag ;I
----- [@ ERECUTION S¥STEM ;I [END ViR
gl (e & PROGRAM Flash;
[E= GLOBAL DEVICE WARIABLE 7 END INTERFACE
-] AXES 3 B
[]"';| EXTERMAL ENCODERS 0 IMPLEMENTATION
(-1 PATH OBJECTS 10 E PROGRAM Flash
I:|"'—‘| CAMS 11 = IF counterVar == 500 THEN // in ewery 500th pass
[-_] TECHMOLOGY 12 #QB62 1= outputWar; // set output byte
EID iROGR":"MS 13 outputVar := EOL (in := outputVar, n := 1):
: .|_'| Insert 5T Dngram 14 [H [* // rotate bit in byte
.|_'| Insert MCC unit 15 - one digit to the left¥)
- Insert DCC charts 16 counterVar := 0; // reset counter
%] Insert LADYFED unit 17 L END IF:
H-B 571 18 counterWar := countervar + 1 // increment counter
-7 LIERARIES 19 = END PROGRAM
{7 MOMITOR =il 20 “END IMPLEMENTATION

| [o el »

Project | Command library | 511 |

x

Level | Meszage :I
Errar ST_1[19]: B007 :Statement expected : Before END_PROGRAM
Errar Errar an:
Errar Syntax eror [ret = Oxbe03000b]
Information EMD of compilation of "ST_1" at 18:58:43
Information Compilation of ST_1: 4 Enar(z), 0 arningls) =
1| | 3
= Svmbol browser E Campile/check output |
Line 18, column 37 |cPe61 1{PROFIELIS) Offline mode MM

Figure 2-23 Error messages during ST source file compilation

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 65

Getting Started with ST

2.4 Creating a sample program

The figure shows an example of compiling the ST source file ST_1 (see Source text of the
sample program (Page 64), in which the following change has been made: The semicolon is
missing in the statement "counterVar := counterVar + 1" at the end of line 18.

The compiler does not detect the error until Line19, because it continues with the compilation
after the missing semicolon.

Once the missing semicolon is added, the ST source file is compiled without errors.

A detailed list of all compiler error messages can be found in Compiler error messages and
their correction (Page 350).

246 Running the sample program

Before you can run the program, you must assign it to an execution level or task. When you
have done this, you can establish the connection to the target system, download the
program to the target system and then start it.

24.6.1 Assigning a sample program to an execution level

The execution levels specify the order in which the programs run. Each execution level
contains one or more tasks to which you can assign programs.

The assignment of a program to a task can only be performed after compilation and before
the program is loaded onto the target system.

Assign the sample program to the BackgroundTask. The BackgroundTaskis provided for the
programming of cyclic sequences without a fixed time frame. It is executed cyclically in the
round robin execution level, which means it will be automatically restarted on completion.

How to assign the sample program to the BackgroundTask.

1. When you double-click the Execution system element in the project navigator, the window
containing the execution system and the program assignment appears in the working
area.

2. Click BackgroundTask to select it for the program assignment.

The program assignment on the left side of the window shows you all the compiled
programs that can be assigned to tasks.

3. In the Programs list, click sample program ST_1.flash. Then, click the >> button to assign
the program to the BackgroundTask.

The result is shown in the following figure. The program ST_1.flash is displayed in the
Programs used list box.

For more information on the execution system and assignment of programs to tasks, see
SIMOTION Motion Control Basic Functions Function Description.

SIMOTION ST Structured Text
66 Programming and Operating Manual, 08/2008

Getting Started with ST
2.4 Creating a sample program

BIVK STMOTION SCOUT - proj_eng - [C240 - EXECUTION SYSTEM*]
Projeck Edit Insert Target swstem View Options Window Help _|ﬁ||ﬂ

| DIS{@I% &) 616 ol %] Bl]| X %] | Sl | lsslal 1] | =] |55 |
J = =IE7 HE”J [Nofiter =] T Hl ﬂ“'E”

= Execution levels — Program assignment | i i =
E--% proj_eng - StartupTask g g Tazk configuration I
----- :,_1 Create nen-lv ddewce [Operation levels Programs [humber of applications): Programs uzed:
----- ™1 Insert single drive unit [#- MotionTasks ST 1.0
: _1.flash 1] 5T 1.flash
- C240 - BackgroundTask
----- Hl] EXECUTION SYSTEM © 5T_1.flash
A= IO £ ServosynchronousT
[GLOBAL DEVICE VARIABLE . . ServoSynchrone
[]---_‘| AXES El- SynchronousTask
[+-/__] EXTERMAL ENCODERS IPOsynchronous
[]---;l PATH OBIECTS - TPy M _T asks — <
-] CAMS El- SynchronousTask_2 —
[#-{_] TECHMOLOGY - IPOsynchronous
a{j PROGRAMS — - TCInput_Tasks_1
----- P_'| Insert 5T program - T Input_Tasks_2 —
® Insert MCC unit -~ TCTasks_L1
P_'| Insert DICC charts = - T Tasks_2 _ILI _ILI
L Trcork | ATVERD ik
a 905) VS Yy £V ' '
Project | Command ibrary | ST_1 g C240 |
=
Level | Meszage |
Information START of compilation of 'ST_1" at 16:55:07
Information EMD of compilation of "ST_1" at 16:55:07
Information Compilation of ST_1: 0 Erar(z), 0w arningls)

== Symbal browser E Compile/check autput |

Press F1 ta open Help display. |cPS611{PROFIBLS) Offline mode [num
Figure 2-24 Assigning the sample program to the BackgroundTask

246.2 Establishing a connection to the target system

Before a connection to the target system can be set up, the PC interface card must be
configured and connected to the target system.

Proceed as follows to connect to the target system:
1. Select the Project > Connect to target system menu command.

The Diagnostics overview tab is opened in the detail view. The diagnostics overview
shows you the operating state, memory allocation and CPU utilization for the device you
are connected to. You can see at the lower right edge of the screen that you are
connected to the target system.

Note

For more detailed information, refer to the SIMOTION SCOUT Configuring Manual and
SIMOTION SCOUT online help.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 67

Getting Started with ST
2.4 Creating a sample program

S SIMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]
Projeck Edit Insert Target swstem View Options Window Help _|ﬁ||ﬂ

| D= Q%) S| (Es] @ o] x| 2Bl | X X] | [Pa kil %) | ln]sia] %3 | | =] | 23] | B |
J B8 | s | [overeer =1 %l || || &5

: - 4 outputVar : BYIE := 1; // auxiliary tag ;I
=-={EH C240 ;I 3 END VAR
----- [@ ERECUTION S¥STEM I3 PRDER.M‘I Flash:
8= 10 7 END_INTERFACE
- [E= GLOBAL DEVICE WARIABLE 5
(-] AXES 3 IMPLEMENTATION
[+-_] EXTERMNAL ENCODERS 10 PROGEAM Flash
I:|"'—‘| PATH DBJECTS 11 = IF counterVar »= 500 THEN // in ewvery 500th paszs
IZZI---_‘I CAM3 12 20BEZ := outputWar; // set output byte
-] TECHMOLOGY 13 outputVar := EOL (in := outputVar, n := 1):
EID PROGRAMS 14 [H {* // rotate bit in byte
%7 Insert ST pragram 15 F one digit to the left¥)
%] Insert MCC unit 16 counterVar := 0; // reset counter
™ Insert DCC charts 17 = END IF:
%] Insert LADJFED unit . 15 counter¥ar := counterWar + 1; // increment counter
EeB ST 19 | END PROGRAM |
PR Flashi) < 20 “ENp 1mPLEMENTATION -
Ial... ITRD ADTES
« | _.|_| [| |
Project | Command library | sT_1 | @ coan |
=
Device | Operating mode | Rak dizk occupied | Rak occupied | kemary card occu... | Retentive data occ... | CPU utilization |
240 STOP 17 KB (01 %) 595 KB (23%) 7974 KB (207 %) 456 B (0.4 %) 1%

. Alarms I == Symhbol braveser IE Compile/check output IE Target system output. % Diagnostics overview

Press F1 ko open Help display. |CPs611{PROFIEUS) [Online mode RILIR

Figure 2-25 Establishing a connection to the target system

SIMOTION ST Structured Text
68 Programming and Operating Manual, 08/2008

Getting Started with ST
2.4 Creating a sample program

2463 Downloading the sample program to the target system
Proceed as follows to download the sample program to the target system:
1. Switch the target system to STOP.
2. Select the Target system > Download > Project to target system menu command.
3. Confirm all further queries.

The Target system output window in the detail view opens and displays the result of the
download.

BV STMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]
Projeck Edit Insert Target swstem View Options Window Help _|ﬁ||ﬂ

T = e R e e e = 1 i R <3
| ; EEHEIHI(NDHRED =] ﬁ”“ jH'E”

: - 4 outputVar : BYIE := 1; // auxiliary tag ;I
=1-=fi={EH C240 -] 5 END_ViR
----- il] ExECUTION SYSTEM & PROGRAM Flash:
-8 1O 7 END_INTERFACE
- [E= GLOBAL DEVICE WARIABLE 5
-] ARES a INPLEMENTATION
(-] EXTERNAL ENCODERS 10 PROGRAM Flash
[]"'—‘| PATH DBJECTS 11 = IF counterVar == 500 THEN // in ewery 500th pass
[]"'—‘| CAMS 12 *0B6Z 1= outputVar: /4 get output byte
-] TECHNOLOGY 13 outputVar := EOL (in := outputVar, n := 1):
EID T‘OGRAMS 14 [(¥ // rotate bit in byte
:‘I Insert ST program 15 one digit to the left®)
- Insert MCC unit 15 counter¥ar := 0; // reset counter
B Insert DCC charts 17 L END IF:
H “#7 Insert LAD{FED urit . 13 counterVar := counterVar + l; // increment counter
Ee=B ST 19 - END_PROGRAM |
PR Flashi) <l llz0 “Enp_ImPLEMENTATION -
Ial... ITRD ADTES
q | _.|_| K| 2
Project | Command library | sT_1 | @ coan |
=
Level | Meszage :I
Information C240: Downloading 'execution system' canfiguration unit,
Infarmation C240: Determination of the charts to be loaded. ..
Information C240: Sources have been changed successfully.
Information C240: Downloading licenze data...
Information C240: Download completed =
| 3
= Symbol broveser IE Compile/check output E Target system output | 5::5 Diagnostics overview I
Press F1 ko open Help display. |CPs611{PROFIEUS) [Online mode RILIR

Figure 2-26 Downloading the sample program to the target system

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 69

Getting Started with ST
2.4 Creating a sample program

2464 Starting and testing the sample program

Starting sample program
Proceed as follows to start the sample program:
e Switch your target system to RUN (see hardware description).

The lamps flash in sequence at the outputs of your target system.

Testing a sample program
See Program test (Page 252).

SIMOTION ST Structured Text
70 Programming and Operating Manual, 08/2008

ST Fundamentals

This section describes the language resources available in ST and how to use them. Please
note that functions, function blocks and the task control system are described in the following
chapters. For a complete formal language description containing all the syntax diagrams,
see Appendix Rules (Page 307).

3.1 Language description resources

Syntax diagrams are used as a basis for the language description in the following sections of
the manual. They provide you with an invaluable insight into the syntactic (i.e. grammatical)
structure of ST.

3.1.1 Syntax diagram

The syntax diagram is a graphical representation of the language structure. The structure is
described by a sequence of rules. A rule can build on existing rules.

Rule name
Sequence
Block 3
»J—{ Block 1 |J—r{ Block 2 I Block 4 I
Block 5
Option Iteration Alternative

Figure 3-1 Syntax diagram

The syntax diagram in the previous figure is read from left to right. The following rule
structures must be observed:

® Sequence: Sequence of blocks

® Option: Statement(s) that can be skipped

® lteration: Repetition of one or more statements

® Alternative: Branch

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 71

ST Fundamentals

3.1 Language description resources

3.1.2

See also

3.1.3

See also

72

Blocks in syntax diagrams

A block is a basic element or an element that is itself composed of blocks. The figure shows
the symbol types used to represent the blocks:

Blocks
Basic element requiring no further Composite element that is described
explanation. by further syntax diagrams.

These are printable characters and special
characters, reserved words and predefined
identifiers.

The specifications in these blocks should
be accepted without modifications.

Figure 3-2 Blocks

Formatted and unformatted rules must be observed when entering source text, i.e. when
converting the blocks or elements of a syntax diagram into source text (see Help for the
language description (Page 291)).

Formal Language Description (Page 291)

Meaning of the rules (semantics)

The rules can only represent the formal structure of the language. The meaning (i.e.
semantics) is not always apparent. For this reason, additional information is written beside
the rules if the meaning is critical. Examples are:

e \Where elements of the same kind have a different meaning, an additional name is
appended. For example, an addition is specified in the dafe rule for every decimal digit
string element - either year, month or day (see Literals (Page 308)). The name indicates
the usage.

® Important restrictions are noted next to the rules. For example, in the /infegerrule for -
(minus), it is noted that the minus can appear only in front of decimal digit strings of data
types SINT, INT, and DINT (see Literals (Page 308)).

Formal Language Description (Page 291)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals
3.2 Basic elements of the language

3.2 Basic elements of the language

The basic elements of the ST language include the ST character set, reserved identifiers
constructed from the ST character set (e.g. language commands), self-defined identifiers
and numbers.

The ST character set and the reserved identifiers are basic elements (terminals) as they are
described verbally and not by another rule. Self-defined identifiers and numbers are not
terminals as they are described by other rules.

In the syntax diagrams, terminals are represented by circles or oval symbols, while
composite elements are represented by rectangles (see Blocks in syntax

diagrams (Page 72)). Below is a selection of the main terminals; for a complete overview,
refer to Basic elements (terminals) (Page 294).

3.2.1 ST character set

ST uses the following letters and digits from the ASCII character set:
® The lower and upper case letters from Ato Z
® The Arabic digits from 0 to 9

Letters and digits are the most commonly used characters. For example, identifiers (see
Identifiers in ST (Page 73)) consist of a combination of letters, digits and the underscore.
The underscore is one of the special characters.

Special characters have a fixed meaning in ST (see Formal Language
Description (Page 291), Basic elements (terminals) (Page 294)).

3.2.2 Identifiers in ST

Identifiers are names in ST. These names can be defined by the system, such as language
commands. However, the names can also be user-defined, for example, for a constant,
variable or function.

3.2.21 Rules for identifiers

Identifiers are made up of letters (A ... Z, a ... z), numbers (0 ... 9) or single underscores (_)
in any order, whereby the first character must be a letter or underscore. No distinction is
made between upper and lower case letters (e.g. Anna and AnNa are considered to be
identical by the compiler).

An identifier can by represented formally by the following syntax diagram:

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 73

ST Fundamentals

3.2 Basic elements of the language

Identifier (formatted)

Letter

Letter

Digit
Underscore

Digit
Underscore

Letter:A..Z,a..z
Digit: 0 .. 9

Figure 3-3 Syntax: Identifier

When assigning a name, it is best to choose a unique, meaningful name that contributes to

the clarity of the program.

The syntax diagram in the figure says that the first character of an identifier must be a letter
or underscore. An underscore must be followed by a letter or number, i.e. more than one
underscore in succession is not allowed. This can be followed by any number or sequence of
underscores, letters or numbers. The only exception here again is that two underscores may

not appear together.

3.2.2.2 Examples of identifiers

Examples of valid identifiers
The following names are valid identifiers:

X yl2
name area

_sum
myFB

Examples of invalid identifiers

The following names are not valid identifiers:

temperature
table

R CONTROLLERS3

Invalid identifier Reason

dter The first character must be a letter or underscore.

*#AB Special characters (except underscores) are not permitted.

RR__20 Two underscores in succession are not permitted.

S value Blank spaces are not permitted as they are special characters.

Array While ARRAY is formally a valid identifier, it is a reserved identifier, i.e. it

may only be used as predefined. This means you cannot use this name for
your own purposes, for example, for a variable.

74

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.2 Basic elements of the language

Identifiers that may not be used
Never define identifiers that:

Are identical to a reserved identifier
For more information, see Reserved identifiers (Page 75).
Match a task name

For a more detailed explanation, refer to the SIMOT/ON Basic Functions Function
Manual.

Note

If possible, avoid defining identifiers that begin with _ (underscore), struct, enum or
command.

While these are valid identifiers, their use can cause errors later when you download
(additional) technology packages. Command words, parameters or data types in the
basic system and in technology packages begin with these characters.

3.23 Reserved identifiers

Reserved identifiers may only be used as predefined. You may not declare a variable or data
type with the name of a reserved identifier.

There is no distinction between upper and lower case notation.

A list of all identifiers with a predefined meaning can be found in the SIMOTION Basic
Functions Function Manual:

For more information on protected and reserved identifiers in the ST programming
language,
see also "Protected identifiers (Page 76)" and "Further reserved identifiers (Page 81)"

For general standard functions and the data types defined in these functions,
see also "Error Sources and Program Test (Page 251)"

General system function blocks

System functions, system variables and data types of SIMOTION devices
(see also list manuals of the SIMOTION devices)

System functions, system variables and data types of technology objects
(see also list manuals of the technology packages)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 75

ST Fundamentals

3.2 Basic elements of the language

3.2.31 Protected identifiers

The protected identifiers of the ST language are listed in the table.

For a brief explanation of all reserved words, please refer to Appendix Reserved
Words (Page 299), and Syntax diagrams (Page 71) in Appendix Rules (Page 307).

Table 3-1 Protected identifiers in ST programming language

A

ABS ANYTYPE_TO_LITTLEBYTEARRAY
ACOS ARRAY

AND AS

ANYOBJECT ASIN
ANYOBJECT_TO_OBJECT AT
ANYTYPE_TO_BIGBYTEARRAY ATAN

B

BIGBYTEARRAY_TO_ANYTYPE BY

BOOL BYTE
BOOL_TO_BYTE BYTE_TO_BOOL
BOOL_TO_DWORD BYTE_TO_DINT
BOOL_TO_WORD BYTE_TO_DWORD
BOOL_VALUE_TO_DINT BYTE_TO_INT
BOOL_VALUE_TO_INT BYTE_TO_SINT
BOOL_VALUE_TO_LREAL BYTE_TO_UDINT
BOOL_VALUE_TO_REAL BYTE_TO_UINT

BOOL_VALUE_TO_SINT
BOOL_VALUE_TO_UDINT
BOOL_VALUE_TO_UINT
BOOL_VALUE_TO_USINT

BYTE_TO_USINT
BYTE_TO_WORD
BYTE_VALUE_TO_LREAL
BYTE_VALUE_TO_REAL

C

CASE CTD_UDINT

CONCAT CTU

CONCAT_DATE_TOD CTU_DINT

CONSTANT CTU_UDINT

Cos CTUD

CTD CTUD_DINT

CTD_DINT CTUD_UDINT

SIMOTION ST Structured Text

76 Programming and Operating Manual, 08/2008

ST Fundamentals

3.2 Basic elements of the language

DINT
DINT_TO_BYTE
DINT_TO_DWORD
DINT_TO_INT
DINT_TO_LREAL
DINT_TO_REAL
DINT_TO_SINT
DINT_TO_STRING
DINT_TO_UDINT
DINT_TO_UINT
DINT_TO_USINT
DINT_TO_WORD
DINT_VALUE_TO_BOOL

D

DATE DO
DATE_AND_TIME DT
DATE_AND_TIME_TO_DATE DT_TO_DATE
DATE_AND_TIME_TO_TIME_OF_DAY DT_TO_TOD
DELETE DWORD

DWORD_TO_BOOL
DWORD_TO_BYTE
DWORD_TO_DINT
DWORD_TO_INT
DWORD_TO_REAL
DWORD_TO_SINT
DWORD_TO_UDINT
DWORD_TO_UINT
DWORD_TO_USINT
DWORD_TO_WORD

DWORD_VALUE_TO_LREAL
DWORD_VALUE_TO_REAL

E

ELSE END_REPEAT
ELSIF END_STRUCT
END_CASE END_TYPE
END_EXPRESSION END_VAR
END_FOR END_WAITFORCONDITION
END_FUNCTION END_WHILE
END_FUNCTION_BLOCK ENUM_TO_DINT
END_IF EXIT
END_IMPLEMENTATION EXP
END_INTERFACE EXPD
END_LABEL EXPRESSION
END_PROGRAM EXPT
F
F_TRIG FOR
FALSE FUNCTION
FIND FUNCTION_BLOCK
G
GOTO

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

77

ST Fundamentals

3.2 Basic elements of the language

IF INT_TO_SINT
IMPLEMENTATION INT_TO_TIME
INSERT INT_TO_UDINT

INT INT_TO_UINT
INT_TO_BYTE INT_TO_USINT
INT_TO_DINT INT_TO_WORD
INT_TO_DWORD INT_VALUE_TO_BOOL
INT_TO_LREAL INTERFACE
INT_TO_REAL

L

LABEL LREAL_TO_REAL
LEFT LREAL_TO_SINT
LEN LREAL_TO_STRING
LIMIT LREAL_TO_UDINT

LITTLEBYTEARRAY_TO_ANYTYPE
LN

LREAL_TO_UINT
LREAL_TO_USINT

LOG LREAL_VALUE_TO_BOOL

LREAL LREAL_VALUE_TO_BYTE

LREAL_TO_DINT LREAL_VALUE_TO_DWORD

LREAL_TO_INT LREAL_VALUE_TO_WORD

G

MAX MOD

MID MUX

MIN

N

NOT

o]

OF OR

P

PROGRAM

SIMOTION ST Structured Text

78 Programming and Operating Manual, 08/2008

ST Fundamentals

3.2 Basic elements of the language

REAL_VALUE_TO_BOOL

R

R_TRIG REAL_VALUE_TO_BYTE
REAL REAL_VALUE_TO_DWORD
REAL_TO_DINT REAL_VALUE_TO_WORD
REAL_TO_DWORD REPEAT

REAL_TO_INT REPLACE
REAL_TO_LREAL RETAIN

REAL_TO_SINT RETURN
REAL_TO_STRING RIGHT

REAL_TO_TIME ROL

REAL_TO_UDINT ROR

REAL_TO_UINT RS

REAL_TO_USINT RTC

S

SEL SINT_TO_WORD
SHL SINT_VALUE_TO_BOOL
SHR SQRT

SIN SR

SINT STRING
SINT_TO_BYTE STRING_TO_DINT
SINT_TO_DINT STRING_TO_LREAL
SINT_TO_DWORD STRING_TO_REAL
SINT_TO_INT STRING_TO_UDINT
SINT_TO_LREAL STRUCT
SINT_TO_REAL StructAlarmid
SINT_TO_UDINT STRUCTALARMID_TO_DINT
SINT_TO_UINT StructTaskld
SINT_TO_USINT

T

TAN TOD

THEN TOF

TIME TON

TIME_OF_DAY TP

TIME_TO_INT TRUE
TIME_TO_REAL TRUNC

TO TYPE

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

79

ST Fundamentals

3.2 Basic elements of the language

U

UDINT
UDINT_TO_BYTE
UDINT_TO_DINT
UDINT_TO_DWORD
UDINT_TO_INT
UDINT_TO_LREAL
UDINT_TO_REAL
UDINT_TO_SINT
UDINT_TO_STRING
UDINT_TO_UINT
UDINT_TO_USINT
UDINT_TO_WORD
UDINT_VALUE_TO_BOOL

UINT_TO_UDINT
UINT_TO_USINT
UINT_TO_WORD
UINT_VALUE_TO_BOOL
UNIT

UNTIL

USELIB
USEPACKAGE
USES

USINT
USINT_TO_BYTE
USINT_TO_DINT
USINT_TO_DWORD

UINT USINT_TOL_INT
UINT_TO_BYTE USINT_TO_LREAL
UINT_TO_DINT USINT_TO_REAL
UINT_TO_DWORD USINT_TO_SINT
UINT_TO_INT USINT_TO_UDINT
UINT_TO_LREAL USINT_TO_UINT
UINT_TO_REAL USINT_TO_WORD
UINT_TO_SINT USINT_VALUE_TO_BOOL
\'

VAR VAR_OUTPUT
VAR_GLOBAL VAR_TEMP
VAR_IN_OUT VOID

VAR_INPUT

W

WAITFORCONDITION WORD_TOL_INT
WHILE WORD_TO_SINT
WITH WORD_TO_UDINT
WORD WORD_TO_UINT

WORD_TO_BOOL
WORD_TO_BYTE
WORD_TO_DINT
WORD_TO_DWORD

WORD_TO_USINT
WORD_VALUE_TO_LREAL
WORD_VALUE_TO_REAL

X
XOR

SIMOTION ST Structured Text
80 Programming and Operating Manual, 08/2008

ST Fundamentals

3.23.2 Additional reserved identifiers

3.2 Basic elements of the language

The table contains additional reserved identifiers that are reserved for future expansions.

Table 3-2 Additional reserved identifiers of the ST language

A

ACTION ADD_TIME

ADD ADD_TOD_TIME
ADD_DT TIME

B

BCD_TO_BYTE BCD_TO_LWORD
BCD_TO_DINT BCD_TO_SINT
BCD_TO_DWORD BCD_TO_WORD
BCD_TO_INT BYTE_TO_BCD

c

CONFIGURATION CTU_ULINT
CTD_LINT CTUD_LINT
CTD_ULINT CTUD_ULINT
CTU_LINT

D

DINT_TO_BCD DIVTIME

DIV DWORD_TO_BCD
E

EN END_STEP
END_ACTION END_TRANSITION
END_CONFIGURATION ENO
END_RESOURCE EQ

F

F_EDGE FROM

G

GE GT

|

INITIAL_STEP INT_TO_BCD

L

LE LWORD

LINT LWORD_TO_BCD
PM

G

MUL MULTIME

N

MS

R

R_EDGE RESOURCE

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

81

ST Fundamentals

3.2 Basic elements of the language

S

SEMA SUB_DT_DT
SINT_TO_BCD SUB_DT_TIME
STEP SUB_TIME

SuB SUB_TOD_TIME
SUB_DATE_DATE SUB_TOD_TOD
T

TRANSITION

U

ULINT

\'

VAR_ACCESS VAR_EXTERNAL
VAR_ALIAS VAR_OBJECT
W

WORD_TO_BCD

3.24

3.2.4.1

82

Numbers and Boolean values

Numbers can be written in various ways in ST. A number can contain a sign, a decimal point
or an exponent. The following rules apply to all numbers:

e Commas and blanks may not appear within a number.
® An underscore (_) is allowed as a visual separator.

® The number can be preceded by a plus (+) or minus (-). If no sign is used, it is
assumed that the number is positive.

® Numbers may not violate certain maximum and minimum values.

Integers

An integer contains neither a decimal point nor an exponent. An integer is thus a sequence
of numeric digits that can be preceded with a sign.

The following are valid integers:

+1
60 000

-1

743 -5280 -32_ 211 321

The following integers are invalid for the reasons indicated:

123,456 Commas are not permitted.
36. An integer may not contain a decimal point.
10 20 30

Blanks are not permitted.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.2 Basic elements of the language

In ST, you can represent integers in different number systems. This is achieved by inserting
a keyword prefix for the number system.

The following are used:

e 2# for the binary system

® 8# for the octal system

® 16# for the hexadecimal system.

Valid representations of the decimal number 15 are:

241111 8#17 16#F

3.24.2 Floating-point numbers

A floating-point number can contain a decimal point or an exponent (or both). A decimal
point must appear between two digits. A floating-point number therefore cannot start or end
with a decimal point.

The following are valid floating-point numbers:

0.0 1.3 -0.2 827.602
0000.0 +0.000743 60 000.15 -315.0066

The following floating-point numbers are invalid:

1. A numeric digit must be present before the decimal point and after the
decimal point.

1,000.0 Commas are not permitted.

1.333.333 Two points are not permitted.

3.24.3 Exponents

An exponent can be included to define the position of the decimal point. If no decimal point
appears, it is assumed that it is on the right side of the digit. The exponent itself must be
either a positive or negative integer. Base 10 is expressed by the letter E.

The magnitude 3 x 108 can be represented in ST by the following correct floating-point

numbers:
3.0E+8 3.0E8 3e+8 3E8 0.3E+9
0.3e9 30.0E+7 30e7

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 83

ST Fundamentals

3.2 Basic elements of the language

The following floating-point numbers are invalid:

3.E+8 A numeric digit must be present before the decimal point and after the decimal
point.

8e2.3 The exponent must be an integer.

-333e-3 A numeric digit must be present before the decimal point and after the decimal
point.

30 E8 Blanks are not permitted.

3.244 Boolean values

Boolean values are bit constants. They must be represented by a value of zero (0) or one (1)
or by the keywords FALSE or TRUE.

Example:
a := 1; // 1is equivalent a := TRUE
b := FALSE; // is equivalent to b := 0

3.245 Data types of numbers

The compiler automatically selects the elementary data type that is suitable for the number
depending on its value and use (in an expression or a value assignment).

You can also specify the data type directly: Place the data type (numeric data type or bit data
type) and the character "#" in front of the number.

Examples:

INT#255 INT#164FF INT#84377
WORD#255 WORD#16#FF WORD#8#377
REAL#255 REAL#16#FF REAL#8#377
REAL#255.0 REAL#2.55E2 LREAL#255.0
Note

Floating-point numbers can only be assigned to data types REAL and LREAL.

SIMOTION ST Structured Text
84 Programming and Operating Manual, 08/2008

ST Fundamentals

3.2 Basic elements of the language

3.25 Character strings

What is a character string?

A character string is a sequence of zero or more characters with an apostrophe at the start
and at the end. Each character is encoded with 1 byte (8 bits) in the string.

A character can be entered as follows:

® As printable characters (ASCII code $20 to $7E, $80 to $FF), except the dollar signs
(ASCII code $24) and apostrophe (ASCII code $27), as these have a special function
within the string

® As the 2-digit hexadecimal ASCII code of the relevant character preceded by the dollar
sign ($)

® As a combination of two characters according to the following table:

Table 3-3 2-character combinations for special characters in strings

Character combination Meaning

$9 Dollar sign $ ($24)

S’ Apostrophe * ($27)

SL or 51 Line Feed LF ($0A)

SN or $n Carriage Return + Line Feed CR + LF ($0D$0A)
SP or Sp Form Feed FF ($0C)

SR or Sr Carriage Return CR ($0D)

ST or St Horizontal tab (HT) ($09)

Examples:

rr

Empty string (length 0).

"A! String of length 1 containing the letter A.

n String of length 1 containing a blank.

TSt String of length 1 containing an apostrophe.

" SRSL’ Two equivalent representations for a string of length 2 containing the characters

" $0DS0A CRand LF.

’$81.007 String of length 5 containing $1.00.

" TextSRSL’ String of length 6 containing the word Text followed by the characters CR and LF.
" AOU’ Two equivalent representations for a string of length 3 containing the German

"SCASDESEC” | ymlauts AOU (A, O, u with diaresis).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 85

ST Fundamentals

3.3 Structure of an ST source file

3.3

86

Structure of an ST source file

An ST source basically consists of continuous text. This text can be structured by dividing it
into logical sections. Detailed rules for this can be found in Source file sections (Page 169).

A brief summary is given below:

e An ST source file is a logical unit that you create in your project and that can appear
several times. It is often referred to as a unit.

® The logic sections of an ST source file are called Sections (see table).
® A user program is the sum of all program sources (e.g. ST source files, MCC units).

Each logical section of the ST source file has a beginning and end denoted by specific
keywords:

ST source file

ST source file . .
Source file section

Section start ———— FUNCTION Testl : REAL
[
—) / VAR CONSTANT
_ Declaration BT : REAL := 3.1415;
Source file VAR _ INPUT
sections r1l : REAL;
b END _ VAR
°
Statement / Testl := PI * rl * rl;
|:| ~ section \ :
‘ :
Section end | END _FUNCTION

Figure 3-4 Structure of an ST source file

You do not have to program every function yourself. You can also make use of SIMOTION
system components. These are preprogrammed sections such as system functions or the
functions of the technology objects (TO functions).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals
3.3 Structure of an ST source file

Table 3-4 Major sections of an ST source file

Source file section Description

Unit statement (optional) Contains the name of the ST

Interface section Contains statements for importing and exporting
variables, types and program organization units (POUs).

Implementation section Contains executable sections of the ST source file.

POU (program organization unit) Single executable section of the ST source file (program,

function, function block)

Declaration section Contains declarations (e.g. of variables and types), can
be included in the interface section and the
implementation section as well as in a POU.

Statement section Contains executable statements of a POU.

Note

An extensively annotated femplate for example unitis also available in the online Help. You
can use it as a template for a new ST source file.

Call the ST editor Help and click the relevant link. Copy the text to the open window of the
ST editor and modify the template according to your requirements.

Template for example unit contains a copy of this template.

3.3.1 Statements

The statement section of a program organization unit (POU - program, function, function
block) consists of repeated single statements. It follows the declaration section of a POU and
ends with the end of the POU. There are no explicit keywords for the start and end.

There are three basic types of statements in ST:
® Value assignments
Assignment of an expression to a variable, see Variable declaration (Page 105)
e Control statements
Repetition or branching of statements, see Control statements (Page 130)
® Subroutine execution

Functions (FC) and function blocks (FB), see Functions, Function Blocks, and
Programs (Page 147)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 87

ST Fundamentals

3.3 Structure of an ST source file

Table 3-5 Examples of statements

// Value assignment
Status := 17;

// Control statement
IF a = b THEN

FOR ¢ := 1 TO 10 DO
b :=b + c;
END FOR;
END IF;

// Function call
retVal := Testl(10.0);

3.3.2 Comments

88

Comments are used for documentation purposes and to help the user understand the source
file section. After compilation, they have no meaning for the program execution.

There are two types of comments:
® Line comment
® Block comment

The line comment is preceded by //. The compiler will process the text which follows until the
end of the line as a comment.

You can enter a block comment over several lines if it is preceded by (* and ends with *).
Please note the following when inserting comments:

® You can use the complete extended ASCII character set in comments.

® The character pairs (* and *) are ignored within the line comment.

e Nesting of block comments is not allowed. However, you can nest line comments in block
comments.

e Comments can be inserted at any position, but not in rules that have to be maintained,
such as in names of identifiers. For more information about these rules, refer to
Language description resources (Page 291).

Table 3-6 Examples of comments

// This is a one-line comment.
a := 5;

// This is an example of a one-line comment
// used several times in succession.
b = 23;

(* The above example 1s easier to edit as a
multi-line comment.
*)

c := 87;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.4 Data types

A data type is used to determine how the value of a variable or constant is to be used in a
program source.

The following data types are available to the user:

See also

Elementary data types
User-defined data types (UDT)

Simple derivatives

Arrays

Enumerators

Structures (Struct)
Technology object data types
System data types

Elementary data types (Page 90)

Description of the technology object data types (Page 101)

System data types (Page 104)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

3.4 Data types

89

ST Fundamentals

3.4 Data types
3.4.1 Elementary data types
3411 Elementary data types
Elementary data types define the structure of data that cannot be broken down into smaller
units. An elementary data type describes a memory area with a fixed length and stands for
bit data, integers, floating-point numbers, duration, time, date and character strings.
All the elementary data types are listed in the table below:
Table 3-7 Bit widths and value ranges of the elementary data types
Type Reserv. word Bit width Range of values
Bit data type
Data of this type use either 1 bit, 8 bits, 16 bits or 32 bits. The initialization value of a variable of this data type is 0.
Bit BOOL 1 0, 1 or FALSE, TRUE
Byte BYTE 8 16#0 to 16#FF
Word WORD 16 16#0 to 16#FFFF
Double word DWORD 32 16#0 to 16#FFFF_FFFF

Numeric types

These data types are available for processing numeric values.
integers) or 0.0 (all floating-point numbers).

The initialization value of a variable of this data type is 0 (all

Short integer SINT 8 -128 to 127 (-2**7 to 2**7-1)

Unsigned short integer | USINT 8 0 to 255 (0 to 2**8-1)

Integer INT 16 -32_768 to 32_767 (-2**15 to 2**15-1)

Unsigned integer UINT 16 0 to 65_535 (0 to 2**16-1)

Double integer DINT 32 -2_147_483_648 to 2_147_483_647 (-2**31 to 2**31-1)

Unsigned double UDINT 32 0to4_294 96_7295 (0 to 2**32-1)

integer

Floating-point number | REAL 32 -3.402_823_466E+38 to -1.175_494_351E-38,

(per IEEE -754) 0.0,
+1.175_494_351E-38 to +3.402_823_466E+38
Accuracy:
23-bit mantissa (corresponds to 6 decimal places), 8-bit
exponent, 1-bit sign.

Long floating-point LREAL 64 -1.797_693_134_862_315_8E+308 to

number -2.225_073_858_507_201_4E-308,

(in accordance with 0.0,

IEEE-754) +2.225_073_858_507_201_4E-308 to
+1.797_693_134_862_315_8E+308
Accuracy:
52-bit mantissa (corresponds to 15 decimal places), 11-bit
exponent, 1-bit sign.

90

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.4 Data types

Type

Reserv. word

Bit width

Range of values

Time types

These data types are used to represent various date and time values.

Duration in increments | TIME 32 T#0d_0h_Om_0s_Oms to T#49d_17h_2m_47s_295ms
of 1 ms Maximum of two digits for the values day, hour, minute,
second and a maximum of three digits for milliseconds
Initialization with T#0d_0h_Om_0s_Oms
Date in increments of 1 | DATE 32 D#1992-01-01 to D#2200-12-31
day Leap years are taken into account, year has four digits,
month and day are two digits each
Initialization with D#0001-01-01
Time of day in steps of | TIME_OF_DAY |32 TOD#0:0:0.0 to TOD#23:59:59.999
1ms (TOD) Maximum of two digits for the values hour, minute, second
and maximum of three digits for milliseconds
Initialization with TOD#0:0:0.0
Date and time DATE_AND_TI |64 DT#1992-01-01-0:0:0.0 to DT#2200-12-31-23:59:59.999
ME DATE_AND_TIME consists of the data types DATE and
(bT) TIME

Initialization with DT#0001-01-01-0:0:0.0

String type

Data of this type represents character strings, in which each character is encoded with the specified number of bytes.
The length of the string can be defined at the declaration. Indicate the length in "[" and "]", e.g. STRING[100]. The default

setting consists of 80 characters.

The number of assigned (initialized) characters can be less than the declared length.

String with 1
byte/character

STRING

8

All characters with ASCII code $00 to $FF are permitted.
Default’’ (empty string)

NOTICE

During variable export to other systems, the value ranges of the corresponding data types
in the target system must be taken into account.

String data type (unformatted)

—— STRING ;
L@—{ Constant expression I—@—I

Character string length
INT data type, value: 1 .. 254

v

Default: 80

Figure 3-5

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Syntax: STRING data type

91

ST Fundamentals

3.4 Data types

3.4.1.2

34.1.3

92

Value range limits of elementary data types

The value range limits of certain elementary data types are available as constants.

Table 3-8 Symbolic constants for the value range limits of elementary data types
Symbolic constant Data type Value Hex notation

SINT#MIN SINT -128 16#80
SINT#MAX SINT 127 16#7F
INT#MIN INT -32768 16#8000
INT#MAX INT 32767 16#7FFF
DINT#MIN DINT -2147483648 16#8000_0000
DINT#MAX DINT 2147483647 16#7FFF_FFFF
USINT#MIN USINT 0 16#00
USINT#MAX USINT 255 16#FF
UINT#MIN UINT 0 16#0000
UINT#MAX UINT 65535 16#FFFF
UDINT#MIN UDINT 0 16#0000_0000
UDINT#MAX UDINT 4294967295 16#FFFF_FFFF
T#MIN TIME T#0ms 16#0000_0000"
TIME#MIN
THMAX TIME T#49d_17h_2m_47s_295ms 16#FFFF_FFFF1
TIME#MAX
TOD#MIN TOD TOD#00:00:00.000 16#0000_0000"
TIME_OF_DAY#MIN
TOD#MAX TOD TOD#23:59:59.999 16#0526_5BFF"

TIME_OF_DAY#MAX

" Internal display only

General data types

General data types are often used for the input and output parameters of system functions
and system function blocks. The subroutine can be called with variables of each data type

that is contained in the general data type.

The following table lists the available general data types:

Table 3-9

General data types

General data type

Data types contained

ANY_BIT BOOL, BYTE, WORD, DWORD

ANY_INT SINT, INT, DINT, USINT, UINT, UDINT

ANY_REAL REAL, LREAL

ANY_NUM ANY_INT, ANY_REAL

ANY_DATE DATE, TIME_OF_DAY (TOD), DATE_AND_TIME (DT)

ANY_ELEMENTARY

ANY_BIT, ANY_NUM, ANY_DATE, TIME, STRING

ANY

ANY_ELEMENTARY, user-defined data types (UDT), system data types,
data types of the technology objects

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.4 Data types

Note

You cannot use general data types as type identifiers in variable or type declarations.

The general data type is retained when a user-defined data type (UDT) is derived directly
from an elementary data type (only possible with the SIMOTION ST programming language).

3414 Elementary system data types

In the SIMOTION system, the data types specified in the table are treated similarly to the
elementary data types. They are used with many system functions.

Table 3-10 Elementary system data types and their use

Identifier Bit width | Use

StructAlarmlid 32 Data type of the alarmld for the project-wide unique identification of
the messages. The alarmld is used for the message generation.
See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTALARMID#NIL

StructTaskld 32 Data type of the taskld for the project-wide unique identification of the

tasks in the execution system.
See Function Manual SIMOTION Basic Functions.
Initialization with STRUCTTASKID#NIL

Table 3-11 Symbolic constants for invalid values of elementary system data types

Symbolic constant Data type Significance
STRUCTALARMID#NIL StructAlarmid Invalid Alarmlid
STRUCTTASKID#NIL StructTaskld Invalid Taskld

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

93

ST Fundamentals

3.4 Data types

3.4.2 User-defined data types

3.4.2.1 User-defined data types

User-defined data types (UDT) are created with the construct TYPE/END_TYPE in the
declaration sections of subsequent source file sections (see Structure of an ST source
file (Page 86) and Source file sections (Page 169)) of the following:

® [nterface section
® |mplementation section
® Program organization unit (POU)

You can continue to use the data types you created in the declaration section. The source
file section determines the range of the type declaration.

See also
Syntax of user-defined data types (type declaration) (Page 95)
Derivation of elementary or derived data types (Page 96)
Derived data type ARRAY (Page 97)
Derived data type - Enumerator (Page 99)
Derived data type STRUCT (structure) (Page 100)

SIMOTION ST Structured Text
94 Programming and Operating Manual, 08/2008

ST Fundamentals

3.42.2

3.4 Data types

Syntax of user-defined data types (type declaration)

User-defined data types — UDT (unformatted)

TYPE 3 Identifier

UDT identifier

—| Data type I—

ARRAY

| datatype |®—| Initialization I—Lr@ END_TYPE

specification

Enumerator
| | datatype -
specification

STRUCT
L| datatype
specification

Figure 3-6 Syntax: User-defined data type

The declaration of the UDT is introduced with the keyword TYPE.

For each data type to be declared, this is followed by (see figure):

1.

Name:

The name of the data type must comply with the rules for identifiers.

. Data type specification

The term data type comprises (see Derivation of elementary or derived data
types (Page 96)):

— Elementary data types

— Previously declared UDTs

— TO data types

— System data types

The following data type specifications are also possible:

— ARRAY data type specification (see Derived data type ARRAY - field (Page 97))
— Enumerator data type specification (see Derived data type enumerator (Page 99))

— STRUCT data type specification (see Derived data type STRUCT —
structure (Page 100))

The references in brackets refer to the following sections, in which the respective data
type specification is described in detail.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

95

ST Fundamentals

3.4 Data types

3. Optional initialization:

You can specify an initialization value for the data type. If you subsequently declare a
variable of this data type, the initialization value is assigned to the variable.
Exception: With the STRUCT data type specification, each individual component is
initialized within the data type specification.

See also Initialization of variables or data types (Page 107).

The complete UDT declaration is terminated with the keyword END_TYPE. You can create
any number of data types within the TYPE/END_TYPE construct. You can use the defined
data types to declare variables or parameters.

UDTs can be nested in any way as long as the syntax in the figure is observed. For example,
you can use previously defined UDTs or nested structures as a data type specification. Type
declarations can only be used sequentially and not in nested structures.

Note

You can learn how to declare variables and parameters in Overview of all variable
declarations (Page 106), and how to assign values with UDT in Syntax for value
assignment (Page 113).

Below is a description of individual data type specifications for UDTs and examples
demonstrating their use.

34.2.3 Derivation of elementary or derived data types

96

In the derivation of data types, an elementary or user-defined data type (UDT) is assigned to
the data type to be defined in the TYPE/END_TYPE construct:

TYPE identifier : Elementary data type { := initialization } ; END_TYPE
TYPE identifier : User-defined data type { := initialization } ; END_TYPE

Once you have declared the data type, you can define variables of derived data type
identifier. This is equivalent to declaring variables as data type elementary data type.

Table 3-12 Examples of derivation of elementary data types

TYPE
I1: INT; // Elementary data type
R1l: REAL; // Elementary data type
R2: R1; // Derived data type (UDT)

END_TYPE

VAR

// These variables can be used wherever
// variables of type INT can be used.
myIl : Il;

myI2 : INT; // No derived data type!

// These variables can be used wherever
// variables of type REAL can be used.

myR1 : R1;
myR2 : R2;
END_VAR
myIl := 1;
myl2 := 2;
myR1l := 2.22;
myR2 := 3.33;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.4 Data types

3.4.24 Derived data type ARRAY

The ARRAY derived data type combines a defined number of components of the same data
type in the TYPE/END_TYPE construct. The syntax diagram in the following figure shows
this data type, which is specified more precisely after the reserved identifier OF.

TYPE identifier : ARRAY data type specification { := initialization } ; END_TYPE

ARRAY data type specification (unformatted)

Index specification

ARRAY ° Constant expression —@— Constant expression

DINT data type DINT data type

—(OF)—| Data type |—>

Figure 3-7 Syntax: ARRAY data type specification

The index specification describes the limits of the array:

® The array limits specify the minimum and maximum value for the index. They can be
specified using constants or constant expressions; the data type is DINT (or can be
implicitly converted to DINT — see Elementary data type conversion (Page 141)).

® The array limits must be separated by two periods.
® The entire index specification is enclosed in square brackets.

® The index itself can be an integer value of data type DINT (or it can be implicitly
converted to DINT - see Elementary data type conversion (Page 141)).

Note

If array limits are violated during runtime, a processing error occurs in the program (see
SIMOTION Basic Functions Function Manual).

You declare the data type of the array components with the data type specification. All of the
options described in this chapter can be used as data types, for example, even user-defined
data types (UDT).

There are several different ARRAY types:
® The one-dimensional ARRAY type is a list of data elements arranged in ascending order.

® The two-dimensional ARRAY type is a table of data consisting of lines and columns. The
first dimension refers to the line number, the second to the column number.

® The higher-dimensional ARRAY type is an expansion of the two-dimensional ARRAY
type that includes additional dimensions.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 97

ST Fundamentals

3.4 Data types

Table 3-13 Examples of one-dimensional arrays

TYPE
x : ARRAY[0..9] OF REAL;
y : ARRAY[1..10] OF C1;
END_TYPE

Two-dimensional arrays are comparable to a table with lines and columns. You can create
two- or multi-dimensional arrays by means of a multi-level type declaration, see example:

Table 3-14 Examples of multi-dimensional arrays

TYPE
a : ARRAY[1..3] OF INT; // one-dimensional array (3 columns):
matrixl: ARRAY[1..4] OF a; // two-dimensional Field
// (4 lines with 3 columns)
b: ARRAY[4..8] OF INT; // one-dimensional array (5 columns) :
matrix2: ARRAY[10..16] OF b; // two-dimensional Field
// (7 lines with 5 columns)
END_TYPE
VAR
m: matrixl; // Variable m of data type two-dim. Field
n: matrix2; // Variable m of data type two-dim. Field
END_ VAR
m[4][3] := 9; // Write to Matrixl at line 4, column 3
6]1[8] := 10; // Write to Matrix2 at line 7, column 5

In the example, you can define:
1. Table columns a[1] to a[3] as a one-dimensional array that will contain integers.

2. Table lines matrix1[1] to matrix2[4] also as an array but take as the data type
specification the array a you just created with the columns of the table.

When you specify an array in the data type specification, you create a second dimension.
You can create further dimensions in this way.

Now declare a variable using the data type created for the table. You address each
dimension of the table using square brackets, in this case specifying the line and column.

SIMOTION ST Structured Text
98 Programming and Operating Manual, 08/2008

ST Fundamentals
3.4 Data types

3425 Derived data type - Enumerator

In the case of enumerator data types, a restricted set of identifiers or names is assigned to
the data type to be defined in the TYPE/END_TYPE construct:

TYPE identifier : Enumerator data type specification { := initialization } ; END_TYPE

Enumerator data type specification (unformatted)

Enumerator element

v

@ — Identifier I @

A 4

Y
\J

Figure 3-8 Syntax: Enumerator data type specification

Once you have declared the /identfifier data type, you can define variables in the enumerator
data type. In the statement section, you can assign only elements from the list of defined
identifiers (enumerator elements) to these variables.

You can also specify the data type directly: Place the enumerator data type identifier and the
"#" sign in front of the enumerator element (see Table Examples of enumerator data types).

You can obtain the first and last value of an enumeration data type with enum_type#MIN and
enum_type#MAX respectively, whereby enum_typeis the enumeration data type identifier.

You can obtain the numeric value of an enumeration element with the ENUM_TO_DINT
conversion function.

Table 3-15 Examples of enumerator data types

TYPE

Cl: (RED, GREEN, BLUE);
END TYPE
VAR

myCll, myCl2, myCl3 : C1;
END VAR
myCll := GREEN;
myCll := C1l#GREEN;
myCl2 := C1#MIN; // RED
myCl3 := CL#MAX; // BLUE
Note

You will also find enumerator data types as system data types.

Enumerator data types can be components of a structure, meaning that they can be found at
any lower level in the user-defined data structure.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 99

ST Fundamentals
3.4 Data types

3.4.2.6 Derived data type STRUCT (structure)

The derived data type STRUCT, or structure, encompasses an area of a fixed number of
components in the TYPE/END_TYPE construct; the data types of these components can
vary:

TYPE identifier : STRUCT data type specification; END_TYPE

STRUCT data type specification (unformatted)

Components Ve
—(STRUCT)— ocbration (_enp_strucT)—()—

Do not forget to terminate the END_STRUCT keyword with a semicolon!

Figure 3-9 Syntax: STRUCT data type specification

The syntax of the component declaration is shown in the following figure.

Initialization |—l—®—>

Component declaration (unformatted)

Identifier Data type

Identifier of the
component ARRAY
data type

specification

Figure 3-10 Syntax: Component declaration

The following are permitted as data types:
e Elementary data types

® Previously declared UDTs

e System data types

e TO data types

® ARRAY data type specification

You also have the option to assign initialization values to the components. Proceed as for
the initialization of variables or data types (see Initialization of variables or data
types (Page 107)).

SIMOTION ST Structured Text
100 Programming and Operating Manual, 08/2008

ST Fundamentals

3.4 Data types

Note

The following data specifications cannot be used directly within a component declaration:
e STRUCT data type specifications
e Enumerator data type specifications

Solution: Declare a UDT (user-defined data type) beforehand with the above-mentioned
specifications and use this in the component declaration.

This allows you to nest STRUCT data types.
You will also find STRUCT data types as system data types.

This example shows how a UDT is defined and how this data type is used within a variable
declaration.

Table 3-16 Examples of derived data type STRUCT

TYPE // UDT definition
S1: STRUCT
varl : INT;
var2 : WORD := 16#AFAl;
var3 : BYTE := 16#FF;

vard : TIME :
END_ STRUCT;
END TYPE

T#1d 1h 10m 22s 2ms;

VAR
myS1l : S1;
END VAR

_4;
T#2d 2h 20m 33s_ 2ms;

mySl.varl :
mySl.var4d :

3.4.3 Technology object data types

3.4.31 Description of the technology object data types

You can declare variables with the data type of a technology object (TO). The following table
shows the data types for the available technology objects in the individual technology
packages.

For example, you can declare a variable with the data type posaxis and assign it an
appropriate instance of a position axis. Such a variable is often referred to as a reference.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 101

ST Fundamentals

3.4 Data types
Table 3-17 Data types of technology objects (TO data type)
Technology object Data type Contained in the technology
package
Drive axis driveAxis CAM'2, PATH, CAM_EXT

External encoder

externalEncoderType

CAM'2, PATH, CAM_EXT

Measuring input

measuringlnputType

CAM'2, PATH, CAM_EXT

Output cam outputCamType CAM'2 PATH, CAM_EXT
Cam track (as of V3.2) _camTrackType CAM, PATH, CAM_EXT
Position axis posAxis CAM'3 PATH, CAM_EXT

Following axis

followingAxis

CAM'4, PATH, CAM_EXT

Following object

followingObjectType

CAM'4, PATH, CAM_EXT

Cam camType CAM, PATH, CAM_EXT
Path axis (as of V4.1) _pathAxis PATH, CAM_EXT

Path object (as of V4.1) _pathObjectType PATH, CAM_EXT

Fixed gear (as of V3.2) _fixedGearType CAM_EXT

Addition object (as of V3.2) | _additionObjectType CAM_EXT

Formula object (as of V3.2) | _formulaObjectType CAM_EXT

Sensor (as of V3.2) _sensorType CAM_EXT

Controller object (as of V3.2) | _controllerObjectType CAM_EXT
Temperature channel temperatureControllerType TControl

General data type,
to which every TO can be
assigned

ANYOBJECT

contained.

1) As of Version V3.1, the BasicMC, Position and Gear technology packages are no longer

2) For Version V3.0, also contained in the BasicMC, Position and Gear technology packages.
3) For Version V3.0, also contained in the Position and Gear technology packages.
4) For Version V3.0, also contained in the Gear technology package.

You can access the elements of technology objects (configuration data and system
variables) via structures (see SIMOTION Basic Functions Function Manual).

Table 3-18 Symbolic constants for invalid values of technology object data types
Symbolic constant Data type Meaning
TO#NIL ANYOBJECT Invalid technology object

Inheritance of the properties for axes (Page 103)

Examples of the use of technology object data types (Page 103)

SIMOTION ST Structured Text
102 Programming and Operating Manual, 08/2008

ST Fundamentals
3.4 Data types

3.4.3.2 Inheritance of the properties for axes

Inheritance for axes means that all of the data types, system variables and functions of the
TO driveAxis are fully included in the TO positionAxis. Similarly, the position axis is fully
included in the TO followingAxis, the following axis in the TO pathAxis. This has, for
example, the following effects:

® |f a function or a function block expects an input parameter of the driveAxis data type, you
can also use a position axis or a following axis or a path axis when calling.

e [f a function or a function block expects an input parameter of the posAxis data type, you
can also use a following axis or a path axis when calling.

3.4.3.3 Examples of the use of technology object data types

Below, you will see an example of optional use of a variable with a technology object data
type (you will find an example of mandatory use of a variable with a TO data type in the
SIMOTION Basic Functions Function Manual). A second example shows the alternative
without using a variable with TO data type.

A TO function will be used to enable an axis in the main part of a program so that the axis
can be positioned. After the positioning operation, the current position of the axis will be
recorded using a structure access.

The first example uses a variable with TO data type to demonstrate its use.

Table 3-19 Example of the use of a data type for technology objects

VAR
myAxis : posAxis; // Declaration variable for axis
myPos : LREAL; // Variable for position of axis
retVal: DINT; // Variable for return value of the
// TO function
END VAR
myAxis := Axisl; // The name Axisl was defined when the axis

// was configured in the project navigator.

// Call of function with variables of TO data type:
retVal := enableAxis(axis := myAxis, commandId := getCommandId());

// Axis 1s positioned.

retvVal := pos(axis := myAxis,
position := 100,
commandId:= getCommandId());

// Scan the position using structure access
myPos := myAxis.positioningState.actualPosition;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 103

ST Fundamentals

3.4 Data types

The second example does not use a variable with TO data type.

Table 3-20 Example of using a technology object

VAR
myPos : LREAL; // Variable for position of axis
retVal: DINT; // Variable for return value of TO function
END_ VAR

// Call of function without variable of TO data type
// The name Axisl was defined when the axis
// was configured in the project navigator.
retVal := enableAxis(axis := Axisl,
commandId:= getCommandId());

// BAxis 1s positioned.

retvVal := pos(axis := Axisl
position := 100,
commandId:= getCommandId());

// Scan the position using structure access
myPos := Axisl.positioningState.actualPosition;

You will find details for configuration of technology objects in the SIMOTION Motion Control
function descriptions.

344 System data types

There are a number of system data types available that you can use without a previous
declaration. And, each imported technology packages provides a library of system data
types.

Additional system data types (primarily enumerator and STRUCT data types) can be found

® |n parameters for the general standard functions (see SIMOTION Basic Functions
Function Manual)

e |n parameters for the general standard function modules (see SIMOTION Basic
Functions Function Manual)

® In system variables of the SIMOTION devices (see relevant parameter manuals)

® |n parameters for the system functions of the SIMOTION devices (see relevant parameter
manuals)

® |n system variables and configuration data of the technology objects (see relevant
parameter manuals)

® |n parameters for the system functions of the technology objects (see relevant parameter
manuals)

SIMOTION ST Structured Text
104 Programming and Operating Manual, 08/2008

ST Fundamentals
3.5 Variable declaration

3.5 Variable declaration

A variable defines a data item with variable contents that can be used in the ST source file. A
variable consists of an identifier (e.g. myVar7) that can be freely selected and a data type
(e.g. BOOL). Reserved identifiers (see Reserved identifiers (Page 75)) must not be used as
identifiers.

3.5.1 Syntax of variable declaration

Variables are always created according to the same pattern in the declaration section of a
source file section:

1. Start a declaration block with an appropriate keyword (e.g. VAR, VAR_GLOBAL - see
Overview of all variable declarations (Page 106)).

2. This is followed by the actual variable declarations (see figure); you can create as many
of these as you wish. The order is arbitrary.

3. End the declaration block with END_VAR.

4. You can create further declaration blocks (also with the same keyword).

Initialization |—l—©—>

Variable declaration (unformatted)

- Identifier

Identifier of the variable

Data type

or the formal parameter
ARRAY dat
in FB or FC) type aa
Specification
()
</

Figure 3-11 Syntax: Variable declaration

Note the following:

® The variable name must be an identifier, i.e. it can only contain letters, numbers or an
underscore, but not special characters.

® The following are permissible as data types:
— Elementary data types
— UDT (user-defined data types)
— System data types
— TO data types
— ARRAY data type specifications

— Designation of a function block (instance declaration — see Calling functions and
function modules (Page 153)).

® You can assign initial values to the variables in the declaration statement. This is known
as initialization (see Initialization of variables or data types (Page 107)).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 105

ST Fundamentals

3.5 Variable declaration

Deviations from the pattern presented are as follows:

® For constant declarations (a constant must be initialized with a value, see
Constants (Page 111)),

® [or process image access (see Overview of all variable declarations (Page 106)):
— A variable declaration is not required for absolute process image access,

— Initialization is not permitted for symbolic process image access.

Table 3-21 Examples of variable declarations

VAR CONSTANT
PI : REAL := 3.1415;
END VAR

VAR
// Declaration of a variable
varl : REAL;
// ... or if there are several variables of the same type:
var?2, var3, vard4d : INT;
// Declaration of a one-dimensional array:
al : ARRAY[1..100] OF REAL;
// Declaration of a character string (string):
strl : STRING[40];
END VAR

352 Overview of all variable declarations

You specify the name, data type, and initial values of variables in the variable and parameter
declarations. You always execute these declarations in the declaration sections of the
following source file sections:

® Interface section
® |mplementation section
® POU (program, function, function block, expression)

The source file section also determines which variables you can declare (see table), as well
as their range.

For additional information about the source file sections, refer to Structure of an ST source
file (Page 86) and Source file sections (Page 169).

SIMOTION ST Structured Text
106 Programming and Operating Manual, 08/2008

ST Fundamentals

3.5 Variable declaration

Table 3-22 Keywords for declaration blocks
Keyword Meaning Declaration in the following
declaration sections
VAR Declaration of temporary or static variables Any POU
See Variable model (Page 184)
VAR_GLOBAL Declaration of unit variables Interface section
See Variable model (Page 184) Implementation section
VAR_IN_OUT Variable declaration of in/out parameter; the Function
POU accesses this variable directly (using a Function block
reference) and can change it immediately. .
Expression
See Defining functions (Page 148), Defining
function blocks (Page 149)
VAR_INPUT Variable declaration of input parameter, value Function
is externally supplied and cannot be changed | Function block
within the POU. .
Expression
See Defining functions (Page 148), Defining
function blocks (Page 149)
VAR_OUTPUT Variables declaration output parameter; value Function block
is transmitted from the function block
See Defining functions (Page 148), Defining
function blocks (Page 149)
VAR_TEMP Declaration of temporary variables Program
See Variable model (Page 184) Function block
RETAIN Declaration of retentive variables Only as a supplement to
See Variable model (Page 184) VAR_GLOBAL in the interface
and implementation section
CONSTANT Declaration of constants Only as a supplement:
See Constants (Page 111) e toVARINFB, FC, or
program
e to VAR_GLOBAL in interface
or implementation section

3.5.3

Initialization of variables or data types

The assignment of initial values to the variables or data types within a declaration is optional
(see Figure Syntax: Variable declaration or Syntax. User-defined data type):

e |[f there is no initialization specified in the variable declaration, the compiler automatically
assigns the initialization value specified in the data type declaration to the variables.

e |f there is no initialization specified in the data type declaration either, the compiler
assigns the value of zero to the variables or data types. Exception:

— For time data types: Initialization values

— For enumeration data types: 1. value of the enumeration

You preassign a variable or a user-defined data type with initial values by assigning a value
(:=) after the data type specification (see Figure Syntax: Variable initialization):

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

107

ST Fundamentals

3.5 Variable declaration

® Assign the elementary data types (or data types derived from elementary data types) a
constant expression in accordance with Figure Syniax: constant expression.

® Assign a field initialization list to a field (ARRAY) according to Figure Syntax: Field
initialization /list.

® Assign a structure initialization list to the individual components of a structure (STRUCT)
in accordance with Figure Syntax. Structure initialization list.

® Assign an enumerator element to an enumerator data type.

Initialization (unformatted)

4{ Constant expression |7

Initialization of elementary data types

A 4

v

f\\[’ | Array initialization list

(1)
\J

Initialization of arrays

—@—{ Structure initialization list |—®—

Initialization of individual components within structures

Figure 3-12 Syntax: Variable initialization

The initialization value assigned to a variable is calculated from the constant expression at
the time of the compilation. See the figure for the syntax. For information about the syntax of
the constant expression, see Figure Syntax: Constant expression.

Note that a variable list (a1, a2, a3, .. : INT :=..) can be initialized with a common value. In
this case, you do not have to initialize the variables individually (a1 : INT := .. ;a2 : INT := .. ;
etc.).

SIMOTION ST Structured Text
108 Programming and Operating Manual, 08/2008

ST Fundamentals

3.5 Variable declaration

Constant expression (unformatted)

I Constant I

Basic logic
operator

Constant Relational Constant
expression operator expression

Basic arithmetic
operator

A 4

| Constant expression I——»

)
S Unary minus l

Negation

T Data type conversion function

—‘ @_ Constant
expression ()

Constant _@_ Constant @
expression expression

Figure 3-13 Syntax: Constant expression

Array initialization list (unformatted)

I Constant expression

Constant expression

> .I Decimal digit string) >

Repeat factor Array initialization list

)
J

Figure 3-14 Syntax: Array initialization list

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 109

ST Fundamentals

3.5 Variable declaration

Structure initialization list (unformatted)

-

Identifier

Designation of the
component

()

o

Initialization

I_

\J

Figure 3-15 Syntax: Structure initialization list

Table 3-23

VAR
// Declaration of a variable
varl REAL 100.0;
// or if there are several
var2, var3, vard INT := 1;
varb REAL 3/ 2;
varb INT 5 * SHL (1,
myC1l Cl GREEN;
arrayl ARRAY [0..4] OF INT
array?2 ARRAY [0..5] OF DINT
array3 ARRAY [0..10] OF INT
is equivalent to
Initialization
Array elements
Array elements
Array elements
Array elements
Array element 10
PosAxis TO#NIL;

Examples of variable initialization

4)

myAxis
END VAR

Table 3-24

TYPE
// Initialization of a derived
typel REAL 10.0;
// Initialization of an enumera
cmyk colour (cyan, magenta,
// Initialization of structures
var rgb colour STRUCT
red, green, blue
END_ STRUCT;
new colour var rgb colour
END_ TYPE

yellow,

USINT

variables of the same type:

3, 8, 017
(7)1;
(2(3),3(1)),01;

3),3(1),2(3),3(1)),0]

4,

14

1
6
2
[2(
o
with 3;
with
with 3;
with
with 0

1;

’

[
[
[
2
£
1
3
6
8

4

Examples of data type initialization

data type

tion data type
black)

yellow;

255;// white

(red blue 0);//green

0,

Variables of a technology object (TO) data type are initialized by the compiler with TO#NIL.

The effect of tasks on variable initialization
Function Manual.

110

is described in the SIMOTION Basic Functions

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

354 Constants

3.5 Variable declaration

Constants are data with a fixed value that you cannot change during program runtime.
Constants are declared in the same way as variables:

® In the declaration section of a POU for local constants (see Figure Syntax: Constant
block in a POU and Syntax. Constant declaration).

® |n the interface or implementation section of the ST source file for unit constants (see
Figure Syntax: Unit constants in the interface or implementation section and Syntax:
Constant declaration). You can import unit constants declared in the interface section into

other ST source files (see Variable model (Page 184)).

The source file section also determines the range of the constant declaration.

Constant block (unformatted)

Constant declaration

——(_ VAR CONSTANT) .

END_VAR ’—»

Figure 3-16 Syntax: Constant block in a POU

Unit constants / global constant block (unformatted)

—>—< VAR_GLOBAL CONSTANT

Constant declaration

Y

%

{ END_VAR ’—»

Figure 3-17 Syntax: Unit constants in interface or implementation section

Constant declaration (unformatted)

- Identifier

Identifier of the
constants

)
</

Data type

Initialization |—®—>

ARRAY
data type
specification

Figure 3-18 Syntax: Constant declaration

The value assigned to a constant is calculated from the constant expression at the time of
compilation. For information about the syntax of the constant expression, see Figure Synfax:

Constant expression.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

111

ST Fundamentals

3.6 Value assignments and expressions

Table 3-25 Examples of constants

VAR CONSTANT

PI : REAL := 3.1415;
intConst : INT := 10;
sintConst : SINT := O;
dintConst : DINT := 10 _000;
timeConst : TIME := TIME#1lh;
strConst : STRING[40] := 'Example of a string';
Two PT : REAL := 2 * PI;
END_ VAR
3.6 Value assignments and expressions

See also

112

You have already created value assignments with the character string :=, perhaps for a
statement as part of the example (see Table Examples of statements in

Statements (Page 87)) or when initializing variables in the declaration section of a source file
section.

However, this is only a small range of the options available for formulating value
assignments. This section of the manual now describes this important topic in detail using a
large number of examples for illustration purposes.

Note

In arithmetic and logic expressions, the result is always calculated in the largest number
format of the expression and converted to the data type of the result. Implicit conversion is
not always possible in value assignments. For more information on this error source and its
solution, see SIMOTION Basic Functions Function Manual.

Notes on avoiding errors and on efficient programming (Page 251)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.6 Value assignments and expressions

3.6.1 Value assignments

3.6.1.1 Syntax of the value assignment

A value assignment is used to assign the value of an expression to a variable. The previous
value is overwritten. Before a value can be correctly assigned, a variable must be declared in
the declaration section (see Syntax of variable declaration (Page 105)).

As shown in the following syntax diagram, the expression is evaluated on the right side of
the assignment sign :=. The result is stored in the variable, whose name is on the left side of
the assignment sign (target variable). All target variables supported from a formal viewpoint
are shown in the figure.

Value assignment (unformatted)

Variable of the
elementary data type

Variable of the
enumerator data type

Array variable

Structured variable

—@—' Expression I—»

Outputs only

T T T T

External tag

_|
_|

—>——| Absolute Pl access
_|

— Access to FB input parameters <1> |—

—| Direct bit access <1> I_

<1> Only for activated "Permit language extensions" compiler option:

Figure 3-19 Syntax: Value assignments

The following contains explanations and examples for the left side of the value assignment:
® Value assignments with variables of an elementary data type (Page 114) ,

® Value assignments with variables of the derived enumerator data type (Page 117)

® Value assignments with variables of the derived ARRAY data type (Page 118)

® Value assignments with variables of the derived STRUCT data type (Page 118)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 113

ST Fundamentals

3.6 Value assignments and expressions

® Value assignments with absolute Pl access (to addresses of the process image), see:
Absolute access to the fixed process image of the BackgroundTask (absolute Pl
access) (Page 221).

How the right side of a value assignment, i.e. an expression, is formed, is described in
Expressions (Page 119).

3.6.1.2 Value assignments with variables of an elementary data type

An expression with an elementary data type (Page 90) can be assigned to a variable when
one of the following conditions is fulfilled:

® Expression and target variable have the same data type.
Note the following information on the STRING data type (Page 114).

® The data type of the expression can be implicitly converted to the data type of the target
variable (see Conversion of elementary data types (Page 141) and Functions for the
conversion of numerical data types and bit data types in the SIMOTION Basic Functions
Function Manual).

Examples
elemVar = 3*3;
elemVar = elemVarl;

See also

Value assignments with variables of a bit data type (Page 116)

3.6.1.3 Value assignments with variables of the STRING elementary data type

Assignments between variables of the STRING data type

There are no restrictions to assignments between variables of the STRING data type
(character strings) that have been declared with different lengths. If the declared length of
the target variable is shorter than the current length of the assigned character string, the
character string is truncated to the length of the target variable.

Exception: The following applies for an in/out assignment (parameter transfer to an in/out
parameter): The declared length of the assigned variable (actual parameter) must be greater
than or equal to the declared length of the target variable (formal in/out parameter). See
Parameter transfer to in/out parameters (Page 154).

See also Elementary data types (Page 90):

Examples:
string20 := 'ABCDEFG';
string20 := string30;

SIMOTION ST Structured Text
114 Programming and Operating Manual, 08/2008

ST Fundamentals
3.6 Value assignments and expressions

Access to elements of a string

The individual elements of a string can be addressed in the same way as the elements of an
array [1..n]. These elements are converted implicitly to the elementary data type BYTE. In
this way assignments between string elements and variables of the BYTE data type are

possible.

Examples:

byteVar := string20[5];
string20[10] := byteVar;

The following special cases have to be taken into account:

1. When assigning a variable of the BYTE data type to a string element
(e.g. stringVar[n:] := byteVar):

— The string element to which the value is to be assigned lies outside of the declared
length of the string:

The string remains unchanged, TSI#ERRNO is set to 1.

— The string element to which the value is to be assigned lies outside of the assigned
length of the string (n > LEN(stringVar)), but within the declared length:

The length of the string is adjusted, the string elements between LEN(stringvar) and n
are set to $00.

2. When assigning a string element to a variable of the BYTE data type
(bytevar := stringVar[n:]):

— The string element to which the variable is to be assigned lies outside of the assigned
length of the string (n > LEN(stringVar)):

The variable is set to 16#00, TSI#ERRNO to 2.

Editing strings

Various system functions are available for the editing of strings, such as the joining of
strings, replacement and extraction of characters, see SIMOTION Basic Functions Function
Manual.

Converting between numbers and strings

Various system functions are available for the conversion between variables of numeric data
types and strings, see Elementary data type conversion (Page 141) and the SIMOT/ION
Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 115

ST Fundamentals

3.6 Value assignments and expressions

3.6.1.4 Value assignments with variables of a bit data type

Access to individual bits of a bit data type variable
You can also access the individual bits of a variable of data type BYTE, WORD or DWORD:
e With standard functions (see SIMOT/ON Basic Functions Function Manual):

You can read, write or invert any bit of a bit string with the functions _getBit, _setBit and
_toggleBit.

You can specify the number of the bit via a variable.
e \WVith direct bit access:

You can define the bit of the variable that you want to access as a constant, via a
separate point behind the variable.

You can only specify the number of the bit via a constant.

To be able to use this option, you must activate the compiler option "Permit language
extensions" (see Global compiler settings (Page 45) and Local compiler
settings (Page 46)).

Direct bit access (formatted)

Only for activated "Permit language extensions" compiler option:

—| Simple variable

Array variable

Structured variable

L L L
T T T T

External tag

—O—' Constant |—>

Data type: ANY_INT

— Access to FB output parameters |—

— Access to FB input parameters —

Permitted data types:
each BYTE, WORD, DWORD

Figure 3-20 Syntax: Direct bit access

SIMOTION ST Structured Text
116 Programming and Operating Manual, 08/2008

ST Fundamentals
3.6 Value assignments and expressions

Table 3-26 Example of direct bit access

// Only with compiler option "Permit language extensions"
FUNCTION f : VOID
VAR CONSTANT

BIT 7 : INT := 7;
END VAR
VAR
dw : DWORD;
b: BOOL;
END VAR
b := dw.BIT_7; // Access to bit 7
b := dw.3; // Access to bit 3
// b := dw.33; // Compilation error;

// Bit 33 not permitted.
END_ FUNCTION

NOTICE

The access to bits of an I/O variable or system variable can be interrupted by other tasks.
There is therefore no guarantee of consistency.

Editing variables of the bit data types
You can:

1. Combine several variables of the same data type into one variable of a higher-level data
type (e.g. two variables of the BYTE data type into one of the WORD data type). Various
system functions are available for this, e.g. WORD_FROM_2BYTE.

2. Split one variable into several variables of a lower-level data type (e.g. one variable of the
DWORD data type into four of the BYTE data type). Various system functions are
available for this, e.g. DWORD_TO_4BYTE.

3. Rotate or shift the bits within a variable. The bit sting standard functions ROL, ROR, SHL
and SHR are available for this.

These system functions and system function blocks are described in the S/IMOTION Basic
Functions Function Manual.

Logic operators

Variables of the bit data types can be combined with logic operators, see Logic expressions
and bit-serial expressions (Page 127).

3.6.1.5 Value assignments with variables of the derived enumerator data type

Each expression and each variable of the derived enumerator data type (see also: Derived
data type - Enumerator (Page 99)) can be assigned another variable of the same type.

typel := BLUE;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 117

ST Fundamentals

3.6 Value assignments and expressions

3.6.1.6 Value assignments with variables of the derived ARRAY data type

An array consists of several dimensions and array elements, all of the same type (see also:
Derived data type ARRAY (Page 97)).

There are various ways to assign arrays to variables. You can assign complete arrays,
individual elements, or parts of arrays:

® A complete array can be assigned to another array if both the data types of the
components and the array limits (the smallest and largest possible array indices) are the
same. Valid assignments are:

array_l 1= array_2;

e An individual array element is addressed by the array name followed by the index value
in square brackets. An index must be an arithmetic expression of the data type SINT,
USINT, INT, UINT or DINT.

eleml = array [i];
array 1 [2] = array 2 [5];
array [J] = 14;

® A value assignment for a valid subarray can be obtained by omitting a pair of square
brackets for each dimension of the array, starting at the right. This addresses a partial
area of the array whose number of dimensions is equal to the number of remaining
indices (see example below).

Consequently, you can reference rows and individual components within a matrix but not
closed columns (closed in the sense of from...to). Valid assignments are:

matrixl[i] := matrix2[k];
arrayl := matrix2 [k];

3.6.1.7 Value assignments with variables of the derived STRUCT data type

Variables of a user-defined data type that contain STRUCT data type specifications are
called structured variables (see also Derived data type STRUCT (structure) (Page 100)).
They can either represent a complete structure or a component of this structure.

Valid parameters for a structure variable are:

structl //Identifier for a structure

structl.eleml //Identifier for a structure component

structl.arrayl //Identifier of a simple array
//within a structure

structl.arrayl[5] //Identifier of an array component

//within a structure

SIMOTION ST Structured Text
118 Programming and Operating Manual, 08/2008

ST Fundamentals
3.6 Value assignments and expressions

There are two ways to assign structures to variables. You can reference complete structures
or structure components:

® A complete structure can only be assigned to another structure if the data type and the
name of both structure components match.

A valid assignment is:

structl := struct2;

® You can assign a type-compatible variable, a type-compatible expression or another
structure component to each structure component.

Valid assignments are:

structl.eleml
structl.eleml
structl.eleml
structl.arrayl
structl.arrayl[10]

Varl;

20;
struct2.eleml;
struct2.arrayl;
100;

Note

You also use structured variables in the FB/nstanceName. OulputParameterformat, e.g.
mycCircle.circumference to access the output variables of a function block, i.e. the result of
the function block. For more information about function blocks, see explanations in Defining
functions (Page 148) and Defining function blocks (Page 149).

A further application of structured variables is to access TO variables and the variables of
the basic system.

3.6.2 Expressions

An expression represents a value that is calculated when the program is compiled or
executed. It consists of operands (e.g. constants, variables or function values) and operators
(e.g. %, [, +,-).

The data types of the operands and the operators involved determine the expression type.
ST uses the following types of expression:

® Arithmetic expressions

® Relational expressions

® | ogic expressions

® Bit-serial expressions

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 119

ST Fundamentals

3.6 Value assignments and expressions

3.6.2.1

3.6.2.2

120

Result of an expression

The result of an expression can be:

® Assigned to a variable

Used as a condition for a control statement

Used as a parameter for a function or function block call.

Note

Expressions containing only the following elements can be used for variable initialization
and index specification in ARRAY declarations (for initialization expressions — see Figure
Syntax.: Constant expression in Initialization of variables or data types (Page 107)):

e Constants

o Basic arithmetic operations

¢ Logic and relational operations
e Bit string standard functions

Interpretation order of an expression

The interpretation order of an expression depends on the following:

The priority of the operators used,
The left-to-right rule,

The use of parentheses (for operators of the same priority).

Expressions are processed according to specific rules:

Operators are executed according to priority
(see table in Priority of operators (Page 129)).

Operators of the same priority are executed from left to right.
A minus symbol in front of an identifier denotes multiplication by -1.

An arithmetic operator cannot be followed immediately by another.
The expression a *-bis therefore invalid, but @ *(-b) is allowed.

Parentheses override the operator priority order, i.e. parentheses have the highest
priority.

Expressions in parentheses are treated as individual operands and are always evaluated
first.

The number of opening parentheses must equal the number of closing parentheses.

Arithmetic operations cannot be used on characters or logic data. For this reason,
expressions such as (n<=0) + (n<0) are invalid.

Table 3-27 Examples of expressions

testVar // Operand

A AND (B) // Logic expression

A AND (NOT B) // Logic expression with negation
(C) < (D) // Relational expression

3+3*%4/2 // Arithmetic expression

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.6 Value assignments and expressions

3.6.3 Operands

Definition

Operands are objects which can be used to formulate expressions. Operands can be
represented by the syntax diagram:

Operand (unformatted)

Variable of the elementary data type

Variable of the enumerator data type

Array variable

Structured variable

Absolute Pl access

Inputs and outputs

Constant

FC call

Access to FB output parameters

External tag

A
-
\%

TTTTTT [TTT]

Access to FB input parameters

|
|1 I I R R

A
-
\%

Direct bit access

<1> Only for activated "Permit language extensions" compiler option:

Figure 3-21 Syntax: Operand

Table 3-28 Examples of operands

intVar

5

$I4.0

PI

NOT TRUE
axisl.motionStateData.actualVelocity

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 121

ST Fundamentals

3.6 Value assignments and expressions

3.6.4 Arithmetic expressions

An arithmetic expression is an expression formed with arithmetical operators. These
expressions allow numerical data types to be processed.

Arithmetic operator (unformatted)

—| Basic arithmetic operator I—

(+)
<V

Figure 3-22 Syntax: Arithmetic operator

Basic arithmetic operator (unformatted)

00 ® o o

Figure 3-23 Syntax: Basic arithmetic operator

The following table shows for each arithmetic operation:
® The arithmetic operator

® The permitted data types of the operands

® The data type of the result.

Some of the General data types (Page 92) are used here.

Note

Further operations are possible with standard numeric functions, see Standard numeric
functions in the SIMOTION Basic Functions Function Manual.

It is recommended to enclose negative numbers in parentheses, even in cases where it is
not absolutely necessary, in order to enhance legibility.

The arithmetic operators are processed in accordance with their rank (Page 129).

SIMOTION ST Structured Text
122 Programming and Operating Manual, 08/2008

ST Fundamentals

3.6 Value assignments and expressions

Table 3-29 Arithmetic operators

Instruction Operator Data type
1st operand 2nd operand Result'

Exponential > ANY_REAL? ANY_REAL ANY_REAL3

(See also EXPT function)

Unary minus - ANY_NUM (None) ANY_NUM

Multiplication * ANY_NUM ANY_NUM ANY_NUM
ANY_BIT# ANY_BIT# ANY_BIT
TIME ANY_NUM TIME

Division / ANY_NUM ANY_NUMS ANY_NUM
ANY_BIT# ANY_BIT45 ANY_BIT
TIME ANY_NUM?3 TIME
TIME TIMES UDINT

Modulo division MOD ANY_INT ANY_INT® ANY_INT
ANY_BIT# ANY_BIT45 ANY_BIT

Addition + ANY_NUM ANY_NUM ANY_NUM
ANY_BIT# ANY_BIT# ANY_BIT
TIME TIME TIMES
TOD TIME TOD®
DT TIME DT7

Subtraction - ANY_NUM ANY_NUM ANY_NUM
ANY_BIT# ANY_BIT# ANY_BIT
TIME TIME TIME
TOD TIMES TOD
DATE DATE TIME®
TOD TOD TIME®
DT TIME DT
DT DT TIME®

1 The data type of the result is determined by the most powerful data type of the operands.

2 The first operand must be greater than zero.

Exceptions as of Version V4.1 of the SIMOTION Kernel:

— If the second operand is an integer, the first operand can be less than zero.

— If the second operand is positive, the first operand can be equal to zero.

The following applies up to Version V4.0 of the SIMOTION Kernel: If the first operand is equal to

zero, an error message can be caught with ExecutionFaultTask.

3 Data type of first operand.

4 Other than BOOL data type. The calculation is made using the unsigned integer of the same bit

width.

5 The second operand must not be equal to zero.

6 Addition, possibly with overflow.

7 Addition with date correction.

8 Restriction of TIME to TOD before calculation.

9 These operations are based on the modulo of the maximum value of the TIME data type.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 123

ST Fundamentals

3.6 Value assignments and expressions

3.6.4.1

Note

If the limits of the value range are exceeded in operations with variables of the general
ANY_REAL data type, the result contains the equivalent bit pattern according to IEEE 754.

In order to establish whether the value range was exceeded in the operation, you can verify
the result using the function _ finite (see SIMOTION Basic Functions Function Manual).

Examples of arithmetic expressions

Examples of arithmetic expressions with numbers

Assuming that /and jare integer variables (e.g. of data type INT) with the values of 11 and -
3 respectively, some example integer expressions and their corresponding values are
presented below:

Expression
i+ 7
-3

* 3
MOD 7
/3

SNSRI

Value

14
-33

-3

Examples of valid arithmetic expressions with time specifications

124

Assume the following variables:

Variables
tl

t2

dl

d2

todl
tod2
dtl

dt2

Content

T#1D 1H 1M 1S 1MS

T#2D 2H 2M 2S 2MS
D#2004-01-11

D#2004-02-12
TOD#11:11:11.11
TOD#12:12:12.12
DT#2004-01-11-11:11:11.11
DT#2004-02-12-12:12:12.12

Data type

TIME

TIME

DATE

DATE
TIME OF DAY
TIME OF DAY
DATE_AND_TIME
DATE AND TIME

Some expressions with these variables and their values are shown in the example.

Expression
tl + t2
dtl + tl
tl - t2
tl * 2
tl / 2

DATE AND TIME TO TIME OF DAY (dtl)
DATE AND TIME TO DATE (dtl)

Value

T#3D_3H 3M 3S 3MS
DT#2004-01-12-12:12:12.111
T#48D 16H 1M 46S_295MS
T#2D_2H 2M 2S 2MS
T#12H_30M 30S_500MS
TOD#11:11:11.110
D#2004-01-11

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.6 Value assignments and expressions

3.6.5 Relational expressions

Definition

A relational expression is an expression of the BOOL data type formed with relational
operators (see figure).

Relational operator (unformatted)

90 9 9 0 9

»

Figure 3-24 Syntax: Relational operators

Relational operators compare the values of two operands (see table) and return a Boolean

value as result.

1st Operand Operafor 2nd Operand -> Boolean value

Table 3-30 Meaning of relational operators

Operator

Meaning

. operand is greater than the 2nd operand

. operand is less than the 2nd operand

. operand is less than or equal to the 2nd operand

. operand is equal to the 2nd operand

<>

1
1
1. operand is greater than or equal to the 2nd operand
1
1
1

. operand is not equal to the 2nd operand

The result of the relational expression is:

® 1 (TRUE), when the comparison is satisfied

® (O (FALSE), when the comparison is not satisfied.

The following table shows permissible combinations of the data types for the two operands
and relational operators.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

125

ST Fundamentals

3.6 Value assignments and expressions

Table 3-31 Relational expressions: Permissible combinations of the data types and relational

operators
Data type Permissible relational operators
1. Operand 2. Operand
ANY_NUM ANY_NUM!? <, >, <=, >=, =, <>
ANY_BIT ANY_BIT <, >, <=, >=, =, <>
DATE DATE <, >, <=, >= = <>
TIME_OF_DAY (TOD) TIME_OF_DAY (TOD) <, >, <=, >=, =, <>
DATE_AND_TIME (DT) DATE_AND_TIME (DT) <, >, <=,>=, =, <>
TIME TIME <, >, <=, >3, =, <>
STRING STRING?2 <, >, <=, >=, =, <>
Enumerator data type Enumerator data type3 =, <>
ARRAY ARRAY?3 =, <>
Structure (STRUCT) Structure (STRUCT)3 =, <>

1 Both operands must be converted to the most powerful data type through implicit conversion (see
Elementary data type conversion (Page 141) and Functions for the conversion of numerical data
types and bit data types in the SIMOTION Basic Functions Function Manual).

2 Variables of the STRING data type can be compared irrespective of the declared length of the
string.

To compare two variables of the STRING data type with different lengths, the shorter character string
is expanded to the length of the longer character string by inserting $00 on the right-hand side. The
comparison starts from left to right and is based on the ASCII code of the respective characters.
Example: 'ABC’ <’AZ’' <’Z’ <’abc’ <’az’ <’Z.

3 Data type of first operand.

Relational expressions and variables or constants of the BOOL data type can be combined
into logic expressions with logic operators (see Logic expressions and bit-serial
expressions (Page 127)). This enables the implementation of queries such as /fa <b and b
<c then....

NOTICE

Relational operators have a higher priority than logic operators in an expression (see
Priority of operators (Page 129)). Therefore the operands of a relational expression must be
placed in brackets if they themselves are logic expressions or bit-serial expressions.

Note that errors can occur when comparing REAL or LREAL variables (also the
corresponding system variables, e.g. axis position).

Table 3-32 Examples of relational expressions

IF A = 2 THEN

/]
END IF;
var 1 := B < C; // var 1 of BOOL data type
IF D < E OR var_2 THEN // var 2 of BOOL data type
//
END IF;

SIMOTION ST Structured Text
126 Programming and Operating Manual, 08/2008

ST Fundamentals

3.6.6

Definition

Logic expressions and bit-serial expressions

3.6 Value assignments and expressions

With the logic operators AND, &, XOR, and OR, it is possible to combine operands and
expressions of the general data type ANY_BIT (BOOL, BYTE, WORD, or DWORD).

With the logic operator NOT it is possible to negate operands and expressions of data type

ANY_BIT.

The table provides information about the available operators:

Table 3-33 Logic operators

Instruction Operator 1. Operand 2. Operand Result!
Negation NOT ANY_BIT - ANY_BIT
Conjunction AND or & ANY_BIT ANY_BIT ANY_BIT
Exclusive XOR ANY_BIT ANY_BIT ANY_BIT
disjunction

Disjunction OR ANY_BIT ANY_BIT ANY_BIT
1 The data type of the result is determined by the most powerful data type of the operands.

The expression is designated

® alogic expression, if only operands of data type BOOL are used.

The operators have the effect on the operands stated in the following truth table.
The result of a logic expression is 1 (TRUE) or 0 (FALSE).
® a bit-serial expression, if operands of data type BYTE, WORD, or DWORD are used.

The operators have the effect on individual bits of the operands stated in the following

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

truth table.
Table 3-34 Truth table of the logic operators
Operands Result (data type BOOL)
(data type BOOL)
a b NOT a NOT b aAND b aXORDb aORb
a&b
0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
127

ST Fundamentals

3.6 Value assignments and expressions

Examples
Table 3-35 Logic expressions
Expression (let n = 10) Value
(n>0) AND (n<20) TRUE
(n>0) AND (n<5) FALSE
(n>0) OR (n<b) TRUE
(n>0) XOR (n<20) FALSE
NOT ((n>0) AND n<20)) FALSE
Table 3-36 Bit-serial expressions
Expression Value
2#01010101 AND 2#11110000 2#01010000
2#01010101 OR 2#11110000 2#11110101
2#01010101 XOR 2#11110000 2#10100101
NOT 2#01010101 2#10101010
Expression in query (let value1 be 2#01, let value2 be 2#11)
IF (valuel AND value2) = 2#01 THEN...
Condition returns TRUE, because bit-serial expression returns 2#01.
SIMOTION ST Structured Text
128

Programming and Operating Manual, 08/2008

ST Fundamentals

3.6.7 Priority of operators

3.6 Value assignments and expressions

Some general rules for the formulation of expressions were described in
Expressions (Page 119). The table shows you the priority of the individual operators within

an expression.

Instruction Symbol Priority
Parentheses (Expression) Highest
Function evaluation Identifier (argument list)
e.g. LN(a), EXPT (a,b) etc.
Negation -
Complement NOT
Exponentiation >
Multiplication *
Division /
Modulo MOD
Addition +
Subtraction -
Comparison <, >, <=, >=
Equal =
Not equal <>
Boolean AND &, AND
Boolean XOR
EXCLUSIVE OR
Boolean OR OR
Lowest
SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 129

ST Fundamentals
3.7 Control statements

3.7 Control statements

Few source file sections can be programmed such that all statements are executed in
sequence from start to end. Usually, some statements will be executed only if a condition is
true (alternatives) and some will be executed repeatedly (loops). Program control statements
within a source file section are the means for accomplishing this.

3.71 IF statement

The IF statement is a conditional statement. It specifies one or more options and selects one
(or none) of its statement sections for execution.

The specified logic expressions are evaluated when the conditional statement is executed. If
the value of an expression is TRUE, the condition is fulfilled, if the value is FALSE, it is not
fulfilled.

IF statement (unformatted)

—>—< IF)—| Expression I—(THEN)—| Statement section

Condition of data type BOOL

ELSIF)—| Expression |—< THEN)—| Statement section

Condition of data type BOOL

ELSE)—' Statement section END_IF °

Do not forget to terminate the END_IF keyword with a semicolon!

Figure 3-25 Syntax: |IF statement

The IF statement is processed according to the following rules:

1. If the value of the first expression is TRUE, the statement section after the THEN is
executed.

The program is subsequently resumed after the END_IF.

2. If the value of the first expression is FALSE, the expressions in the ELSIF branches are
evaluated. If a Boolean expression in one of the ELSIF branches is TRUE, the statement
section following THEN is executed.

The program is subsequently resumed after the END_IF.

SIMOTION ST Structured Text
130 Programming and Operating Manual, 08/2008

ST Fundamentals

3.7 Control statements

3. If none of the Boolean expressions in the ELSIF branches is TRUE, the sequence of
statements after the ELSE is executed (or, if there is no ELSE branch, no further
statements are executed).

The program is subsequently resumed after the END_IF.
Any number of ELSIF statements may be programmed.

Note that there may not be any ELSIF branches and/or ELSE branch. This is interpreted in
the same way as if the branches existed with no statements.

Note

An advantage of using one or more ELSIF branches rather than a sequence of IF statements
is that the logic expressions following a valid expression are no longer evaluated. This helps
to reduce the processing time required for the program and to prevent execution of
unwanted program routines.

Table 3-37 Examples of the IF statement

IF A=B THEN
n:= 0;
END IF;

IF temperature < 5.0 THEN

$00.0 := TRUE;
ELSIF temperature > 10.0 THEN
$00.2 := TRUE;
ELSE
%$Q0.1 := TRUE;
END IF;

3.7.2 CASE statement

The CASE statement is used to select 1 of n program sections.
This selection determines a selection expression (selector):

® Expression of general data type ANY_INT

e Variable of an enumeration data type (enumerator)

The selection is made from a list of values (value list), whereby a section of the program is
assigned to each value or group of values.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 131

ST Fundamentals

3.7 Control statements

CASE statement (unformatted)

—| Variable I—

Enumerator data type

—| Expression I—"

Data type ANY_INT

T{ Value list I—@—' Statement section

J—(ELSE)—| Statement section I—l—< END_CASE)—©—>

Do not forget to terminate the END_CASE keyword with a semicolon!

Figure 3-26 Syntax: CASE statement

The CASE statement is processed according to the following rules:

1. The selection expression (selector) is calculated. It must return a value of general data
type ANY_INT (integer) or an enumerator data type.

2. Then a check is performed to determine whether the selector value is contained in the
value list. Each value in the list represents one of the allowed values for the selection
expression.

3. If a match is found, the program section assigned in the list is executed.
4. The ELSE branch is optional. It is executed if no match is found.

5. If the ELSE branch is missing and no match is found, the program is resumed after
END_CASE.

The value list contains the allowed values for the selection expression.

SIMOTION ST Structured Text
132 Programming and Operating Manual, 08/2008

ST Fundamentals

3.7 Control statements

Value list (unformatted)

I Constant I
Value
—| Constant I—@—' Constant I—
Value 1 Value 2
Value 1 <= Value 2

)
S

Figure 3-27 Syntax: Value list

Note the following when formulating the value list:

e FEach value list can begin with a constant (value), a constant list (value?, valueZ2, value3,
efc.) or a constant range (value? fo value?).

® Values in the value list must be integer values or constants/elements of the enumeration
data type of the selector.

Note
A value should only occur once in the value lists of a CASE statement.

In the event of multiple occurrence of a value, the compiler will issue an alarm, and only
the section of the statement corresponding to the value list in which the value occurred
first is executed.

The following example illustrates the use of the CASE statement.

Table 3-38 Examples of the CASE statement

CASE intVar OF

1 a =1,
2,3 : b :=1;
4..9 : ¢c = 1; d:=2;
ELSE
e := 5;
END_CASE;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 133

ST Fundamentals

3.7 Control statements

3.7.3 FOR statement

A FOR statement or a repeat statement executes a series of statements in a loop, whereby
values are assigned to a variable (a count variable) on each pass. The count variable must
be a local variable of type SINT, INT or DINT.

The definition of a loop with FOR includes the specification of a start and end value. Both
variables must be the same data type as the count variable.

Note

You use the FOR statement when the number of loop passes is known at the programming
stage. If the number of passes is not known, the WHILE or REPEAT statement is more
suitable (see WHILE statement (Page 136) and REPEAT statement (Page 137)).

FOR statement (unformatted)

FOR Variable identifier C Expression I l

Start value

Simple variable, data type
SINT/USINT/INT/UINT/DINT

\—(TO)—' Expression IJ—C BY)—' Expression I—l—

End value Increment

L(DO)—— Statement section END_FOR)

Do not forget to terminate the END_FOR keyword with a semicolon!

Figure 3-28 Syntax: FOR statement

3.7.3.1 Processing of the FOR statement
The FOR statement is processed according to the following rules:

1. At the start of the loop, the count variable is set to the start value and is increased
(positive increment) or decreased (negative increment) by the specified increment after
each loop pass until the end value is reached. After the first loop pass, the start value is
known as the current value.

2. On each pass, the system checks whether the following conditions are true:
— Start value or current value <= end value (for positive increment) or
— Start value or current value >= end value (for negative increment)
If the condition is fulfilled, the sequence of statements is executed.

If the condition is not fulfilled, the loop and, thus, the sequence of statements is skipped
and the program is resumed after END_FOR.

SIMOTION ST Structured Text
134 Programming and Operating Manual, 08/2008

ST Fundamentals

3.7.3.2

3.7.3.3

3.

3.7 Control statements

If the FOR loop is not executed due to Step 2, the count variable retains the current
value.

Rules for the FOR statement
The following rules apply to the FOR statement:

The BY [increment] specification can be omitted. If no increment is specified, the default
is +1.

The start value, end value and increment are expressions (see Expressions (Page 119)).
The expression is evaluated once at the beginning of the FOR statement.

If the start value and end value are of the DINT data type, the value of (end value - start
value) must be less than the maximum value range of the double integer, that is, less
than 2**31-1.

Only the first selection statement for which the selector is true is executed.

The count variable contains the value which triggers the loop exit, i.e. it is incremented
before the loop is exited.

You are not allowed to change the end value and increment value during the execution of
the loop.

Example of the FOR statement

Table 3-39 Example of the FOR statement

FOR k := 1 TO 10 BY 2 DO
1l:=1+1;
VA

END_FOR;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 135

ST Fundamentals

3.7 Control statements

3.7.4 WHILE statement

136

The WHILE statement allows a sequence of statements to be executed repeatedly under the
control of an iteration condition. The iteration condition is formulated in accordance with the
rules for a logic expression.

Note

You use the WHILE statement when the number of loop passes is not known at the
programming stage. If the number of passes is known, the FOR statement is more suitable
(see FOR statement (Page 134)).

WHILE statement (unformatted)

—>—< WHILE)—' Expression I—(DO)—‘

Condition of data type BOOL

L{ Statement section }|—(Enp_wHiLE)—@—»

Do not forget to terminate the END_WHILE keyword with a semicolon!

Figure 3-29 Syntax: WHILE statement

The statement section after DO is repeated until the iteration condition has the value TRUE.
The WHILE statement is processed according to the following rules:

1. The iteration condition is evaluated each time before the statement section is executed.
2. If the value is TRUE, the statement section is executed.

3. If the value is FALSE, the WHILE statement is terminated (this can occur the first time the
condition is evaluated) and the program is resumed after END_WHILE.

Table 3-40 Example of the WHILE statement

WHILE Index <= 50 DO
Index:= Index + 2;
END WHILE;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

3.7 Control statements

3.75 REPEAT statement

A REPEAT statement causes a sequence of statements programmed between REPEAT and
UNTIL to be executed repeatedly until a termination condition is true. The termination
condition is formulated in accordance with the rules for a logic expression.

Note

You use the REPEAT statement when the number of loop passes is not known at the
programming stage. If the number of passes is known, the FOR statement is more suitable
(see FOR statement (Page 134)).

REPEAT statement (unformatted)

—+(REPEAT)—| Statement section —C unTic)—‘
L{ Expression | enp_repeaT)-@-»

Condition of data type BOOL

Do not forget to terminate the END_REPEAT keyword with a semicolon!

Figure 3-30 Syntax: REPEAT statement

The condition is checked after the statement section is executed. That means the statement
section is executed at least once, even if the termination condition is true at the start.

The REPEAT statement is processed according to the following rules:

1. The iteration condition is evaluated each time after the statement section is executed.

2. If the value is FALSE, the statement section is executed again.

3. If the value is TRUE, execution of the REPEAT statement is terminated and program
execution is resumed after END_REPEAT.

Table 3-41 Example of the REPEAT statement

Index:= 1;
REPEAT
Index:= Index + 2;
UNTIL Index > 50
END REPEAT;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 137

ST Fundamentals

3.7 Control statements

3.7.6 EXIT statement

An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT loop) at any point,
irrespective of whether the termination condition is true or false.

This statement has the effect of jumping directly out of the loop immediately surrounding the
EXIT statement.

The program resumes after the end of the loop (e.g. after END_FOR).

Table 3-42 Example of the EXIT statement

Index:= 1;
FOR Index := 1 to 51 BY 2 DO

IF %I0.0 THEN

EXIT;

END_IF;
END_FOR;
// The following value assignment is made after the execution of EXIT
// or after the regular end of the FOR loop
// For the execution:
Index_find = IndeX_Z;

3.7.7 RETURN statement

A RETURN statement causes termination of the POU currently being processed (program,
function, function block).

When a function or a function block is terminated, program execution continues in the
higher-level POU after the position where the function or function block was called.

Table 3-43 Example of the RETURN statement

Index:= 1;
FOR Index := 1 to 51 BY 2 DO

IF %$I0.0 THEN

RETURN;

END IF;
END_FOR;
// The following value assignment is made after the regular end
// of the FOR loop for the execution, however, not after the execution
// of RETURN:
Index find := Index 2;

SIMOTION ST Structured Text
138 Programming and Operating Manual, 08/2008

ST Fundamentals
3.7 Control statements

3.7.8 WAITFORCONDITION statement

You can use the WAITFORCONDITION statement to wait for a programmable event or
condition in a MotionTask. The statement suspends execution of the calling MotionTask until
the condition is true. You program this condition in an Expression (Page 166). More
information about the WAITFORCONDITION and expressions in this regard is contained in
the SIMOTION Motion Control Basic Functions Function Manual.

WAITFORCONDITION statement (unformatted)

——(_ WAITFORCONDITION)—‘

\—{ Expression identifier I——®—| FC parameter I—@ ¥

Condition: The call of an expression with parameters is
Name of a construct declared with permitted only as of Version V4.1 of the
EXPRESSION SIMOTION kernel.

Edge evaluation

WITH Expression | * (" po)

BOOL data type
TRUE: Rising edge of the condition is evaluated.
FALSE: Condition is evaluated statically (default setting).

L{ Statement section __|—(__END_WAITFORCONDITION _)—(;)—

Do not forget to terminate the
END_WAITFORCONDITION keyword with a semicolon!

Figure 3-31 Syntax: WAITFORCONDITION statement

Expression identifieris a construct declared with EXPRESSION; its value defines (together
with WITH edge evaluation, if necessary) whether the condition is considered as been
satisfied.

The WITH edge evaluation sequence is optional. Edge evaluationis an expression of data
type BOOL,; it determines how the value of expression identifieris interpreted:

® Fdge evaluation = TRUE: The rising edge of expression identifieris interpreted; i.e. the
condition is satisfied when the value of expression identifierchanges from FALSE to
TRUE.

® Fdge evaluation = FALSE: The static value of expression identifieris interpreted; i.e. the
condition is satisfied when the value of expression identifieris TRUE.

If WITH edge evaluation is not specified, the default setting is FALSE, i.e. the static value of
expression identifier is evaluated.

The statement section must contain at least one statement (empty statements also possible).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 139

ST Fundamentals

3.7 Control statements

Table 3-44 Example of the WAITFORCONDITION statement
/.

// Call the statement with name of expression
WAITFORCONDITION myExpression WITH TRUE DO
// Here, at least one statement will be executed with higher priority,

e.g.

%$Q0.0 := TRUE;
END WAITFORCONDITION;
/...

For a complete example, refer to the description for the Expression (Page 166).

3.79 GOTO statement

The GOTO statement causes a jump to the jump label specified in the statement (see Jump
statement and label (Page 250))

You program jump statements with the GOTO statement and specify the jump label to which
you want to jump. Jumps are only permitted within a POU.

GOTO statement

v

—>—< GOTO)—| Jump label |—O

Jump label defined in a statement and optionally
in the jump label declaration (LABEL).

Figure 3-32 Syntax: GOTO statement

Note

You should only use the GOTO statement in special circumstances (for example, for
troubleshooting). It should not be used at all according to the rules for structured
programming.

Jumps are only permitted within a POU.

The following jumps are illegal:

e Jumps to subordinate control structures (WHILE, FOR, etc.)
e Jumps from a WAITFORCONDITION structure

e Jumps within CASE statements

Jump labels can only be declared in the POU in which they are used. If jump labels are
declared, only the declared jump labels may be used.

SIMOTION ST Structured Text
140 Programming and Operating Manual, 08/2008

ST Fundamentals

3.8 Data type conversions

3.8 Data type conversions
This section describes how you can implicitly and explicitly convert between elementary data
types. It also contains an overview of the additional conversion possibilities.
3.8.1 Elementary data type conversion
The table presents an overview of the conversion options between numerical data types and
bit data types. The following are distinct conversion options:
e |mplicit conversion: Conversion is automatic when different data types are used in an
expression or when values are assigned by the compiler.
® Explicit conversion: Conversion is carried out when the user calls a conversion function
(see SIMOTION Basic Functions Function Manual).
Table 3-45 Type conversion of numeric data types and bit data types
Source Target data type
data type BOOL | BYTE | WORD | DWOR | USINT | UINT | UDINT | SINT INT DINT REAL | LREAL | STRIN
D G
BOOL - Im/Ex Im/Ex Im/Ex Val Val Val Val Val Val Val Val -
BYTE Ex - Im/Ex Im/Ex Ex Ex Ex Ex Ex Ex Val Val Elem
WORD Ex Ex - Im/Ex Ex Ex Ex Ex Ex Ex Val Val -
DWORD Ex Ex Ex - Ex Ex Ex Ex Ex Ex Ex/Val Val -
USINT Val Ex Ex Ex - Im/Ex Im/Ex Ex Im/Ex Im/Ex Im/Ex Im/Ex -
UINT Val Ex Ex Ex Ex - Im/Ex Ex Ex Im/Ex Im/Ex Im/Ex -
UDINT Val Ex Ex Ex Ex Ex - Ex Ex Ex Ex Ex Ex
SINT Val Ex Ex Ex Ex Ex Ex - Im/Ex Im/Ex Im/Ex Im/Ex -
INT Val Ex Ex Ex Ex Ex Ex Ex - Im/Ex Im/Ex Im/Ex -
DINT Val Ex Ex Ex Ex Ex Ex Ex Ex - Ex Im/Ex Ex
REAL Val Val Val Ex/Val Ex Ex Ex Ex Ex Ex - Im/Ex Ex
LREAL Val Val Val Val Ex Ex Ex Ex Ex Ex Ex - Ex
STRING - Elem - - - - Ex - - Ex Ex Ex -
Im: Implicit data type conversion possible
Ex: Explicit data type conversion possible using the Quelldatentyp_TO_Zieldatentyp type conversion function
Val: Explicit data type conversion possible using the
Quelldatentyp_VALUE_TO_Zieldatentyp type conversion function
Elem: Implicit data type conversion with an element of the STRING data type

For information on conversion functions for date and time data types: Please refer to the
SIMOTION Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 141

ST Fundamentals

3.8 Data type conversions

3.8.11 Implicit data type conversions

142

Implicit type conversion is always possible if an enlargement of the value range does not
cause any value loss, e.g. from REAL to LREAL or from INT to REAL. The result is always
defined.

The following figure provides a graphics-based view of all implicit type conversion chains.
Each stage in the type conversion chain - reading from left to right or from top to bottom -
always represents an enlargement of the value range.

Bit data BOOL —» BYTE —» WORD —» DWORD
Integers
unsigned USTT — UINT — UDIlNT
INT DINT LREAL
REAL
Integers
signed SINT — INT — DINT

L

REAL LREAL

Floating-point

REAL —» LREAL
numbers

Figure 3-33 Implicit type conversion chains (one or more levels from left to right or one level from top
to bottom)

The following implicit type conversions are supported:

1. Horizontally (from left to right) over one or more levels (e.g. USINT to UDINT)

2. Vertically (from top to bottom) over one level (e.g. UINT to REAL)

The implicit type conversions can be combined in the following order (e.g. INT to LREAL).

All other type conversions cannot be performed implicitly (e.g. UDINT to REAL), that is, you
must use an explicit function (see SIMOTION Basic Functions Function Manual).

Note

In arithmetic expressions, the result is always calculated in the largest number format

contained in the expression.

A value can only be assigned to the expression if:

e The calculated expression and the variable to be assigned are of the same data type.

e The data type of the calculated expression can be implicitly converted to the data type of
the variable to be assigned.

For more information on this error source and its solution: Please refer to the SIMOTION
Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

ST Fundamentals

Table 3-46

VAR
usint var
real var

byte var

string var
END VAR
usint var := 234
real var = 234
usint var := 234
real var = 234
usint var := 234
byte var = stri

string_var[lO]

USINT;

REAL;

BYTE;

STRING[80] :=

/ 10; //
//

/ 10; //
//
//

/ SINT#10; //
//
//

/ 10.0; //
//

/ 10.0; //
//

//
ng varl[5]; //
//
byte var; //
//

3.8 Data type conversions

Example of data types in expressions and value assignments

'example for string';

Expression data type: USINT
Result = 23
Expression data type: USINT

Implicit conversion possible
Result 23.0

Expression data type: INT
Implicit conversion and

value assignment not possible
Expression data type: REAL
Result 23.4

Expression data type: REAL
Implicit conversion and
value assignment not possible

Implicit conversion possible
Result 16#70 ('p")

Implicit conversion possible
Result 'example fpr string'

Note

If applicable, specify the data type explicitly for numbers (e.g. UINT#127, if the number 127
is to be of data type UINT instead of USINT).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

143

ST Fundamentals
3.8 Data type conversions

3.8.1.2 Explicit data type conversions

Explicit conversion is always required if information could be lost, for example, if the value
range is decreased or the accuracy is reduced, as is the case for conversion from LREAL to
REAL.

The conversion functions for numeric data types and bit data types are listed in the
SIMOTION Basic Functions Function Manual.

The compiler outputs warnings when it detects conversions associated with loss of precision.

NOTICE

The type conversion may cause errors when the program is running, which will trigger the
error response set in the task configuration (see SIMOTION Basic Functions Function

Manual).

Special attention is required when converting DWORD to REAL. The bit string from
DWORD is taken unchecked as the REAL value. You must make sure that the bit string in
DWORD corresponds to the bit pattern of a normalized floating-point number in accordance
with IEEE. To do this, you can use the _finite and _isNaN functions.

Otherwise, an error is triggered (see above) as soon as the REAL value is first used for an
arithmetic operation (for example, in the program or when monitoring in the symbol
browser).

Note
The following applies if the value range limits are exceeded during conversion from LREAL
to REAL:
e Underflow (absolute value of LREAL number is smaller than the smallest positive REAL
number):
Result is 0.0.
e Overflow (absolute value of LREAL number is larger than the largest positive REAL

number):
The error response specified during task configuration is triggered.

SIMOTION ST Structured Text
144 Programming and Operating Manual, 08/2008

ST Fundamentals
3.8 Data type conversions

3.8.2 Supplementary conversions
The ST system functions and ST system functions also permit the following conversions:
e Combining bit-string data types

These functions combine multiple variables of a bit string data type into one variable of a
higher-level data type.

e Splitting bit-string data types

These function blocks split up a variable of a bit string data type into multiple variables of
a higher-level data type.

e Converting between any data types and byte arrays

They are commonly used to create defined transmission formats for data exchange
between various devices.

For further information (e.g. on the arrangement of the byte arrays, application example):
Please refer to the SIMOTION Basic Functions Function Manual.

e Conversion of technology object data types

It converts variables of a hierarchical TO data type (driveAxis, posAxis, or followingAxis)
or of the general ANYOBJECT type to a compatible TO data type.

For Application Examples and further information: Please refer to the SIMOTION Basic
Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 145

Functions, Function Blocks, and Programs 4

This chapter describes how to create and call user-defined functions and function blocks.
Standard functions are already available in the system for type conversion, trigonometry, and
bit string manipulation. The SIMOTION Basic Functions Function Manual describes how to
use system functions and functions of technology objects (TO functions).

A function (FC) is a logic block with no static data. All local variables lose their value when
you exit the function and are reinitialized the next time you call the function.

A function block (FB) is a code block with static data. Since an FB has memory, its output
parameters can be accessed at any time and from any point in the user program. Local
variables retain their values between calls.

Programs are similar to FBs, but have no parameters. However, they can be assigned
execution levels and tasks (see SIMOTION Basic Functions Function Manual).

FCs and FBs have the advantage that they can be reused, because they are encapsulated
source file sections to which parameters can be assigned.

Functions, function blocks, and programs are program organization units (POUs), i.e. they
are executable source file sections. You will find an overview of all source file sections in
Use of the source file sections (Page 169).

4.1 Creating and calling functions and function blocks

The following description explains how to create and call functions (FCs) and function blocks
(FBs). A complete example showing the differences between FC and FB is contained in
Comparison of functions and function blocks (Page 161).

The order in which you must define and call the stipulated source file sections is given in Use
of the source file sections (Page 169).

How to export and import FCs and FBs is explained in Section Import and export between
ST source files (Page 179).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 147

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

411

148

Defining functions

You define a function in the declaration part of the implementation section before the section
of the source file (program, FB, or FC) in which it is called.

Use the following syntax:

Function (unformatted)

Function identifier VOID

-+ FUNCTION)— Identifier

Data type

; - Statement
FC declaration section I—L section —(END_FUNCTION)—>

Note for functions with data type (not VOID):
The return value of the function identifier must be assigned in the statement section!

Figure 4-1 Syntax: Function (FC)

The FUNCTION keyword is followed by an identifier as the FC name and the data type of the
return value. Enter VOID as data type if the FC has no return value.

Then enter (see example in Source file with comments (Page 162)):

® The optional declaration section

® The statement section

e The END_FUNCTION keyword

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

4.1.2 Defining function blocks

You define a function block in the declaration part of the implementation section before the
section of the source file (program, FB or FC) in which the FB is called.

Use the following syntax:

Function block (unformatted)

Function block identifier

—»—(FUNCTION_BLOCK)—| Identifier |—‘

\—L FB declaration section J—Statement section —(END_FUNCTION_BLOCK)—»

Figure 4-2 Syntax: Function block (FB)

Enter an identifier as the FB name after the FUNCTION_BLOCK keyword.
Then enter (see example in Source file with comments (Page 162)):

® The optional declaration section

® The statement section

® The END_FUNCTION keyword

413 Declaration section of FB and FC

A declaration section is subdivided into various declaration blocks that are each identified by
a separate pair of keywords. Each block contains a declaration list for similar data, such as
constants, local variables and parameters. Each type of block may only appear once; the
blocks may appear in any order.

The following options are then available for the declaration section of an FC and an FB (see
also the example in Source file with comments (Page 162)):

Table 4-1

Declaration blocks for FC and FB: Options

Data

Syntax

FB

FC

Constant

VAR CONSTANT
Declaration list
END_VAR

Input parameters

VAR_INPUT
Declaration list
END_VAR

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

149

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

Data Syntax FB FC
In/out parameter VAR_IN_OUT X X
Declaration list
END_VAR
Output parameters VAR_OUTPUT X -
Declaration list
END_VAR
Local variable VAR X X
(for FC and FB) Declaration list (static) (temporary)
END_VAR
Local variable VAR_TEMP X -
(for FB) Declaration list (temporary)
END_VAR
Declaration list. The list of identifiers of the type to be declared

Parameters are local data and are formal parameters of a function block or function. When
the FB or FC is called, the formal parameters are substituted by the actual parameters, thus
providing a means of exchanging information between the called and calling source file

sections.

e Formal input parameters receive the actual input values (data flow inwards).

® Formal output parameters (only for FB) are used to transfer output values (data flow

outwards).

® Formal in/out parameters act as input and output parameters.

The following figures show the syntax for the parameter declaration of an FB or an FC.

FB parameter block (unformatted)

—(VARLINPUT

For input parameter

——(VAR_OUTPUT

Formal parameter

;—| Variable declaration

For output parameter

—(VARLN.OUT)—

For in/out parameter

Variable declaration

END_VAR —>

Instance declaration

I
1

Initialization not possible

The VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT keywords may be used just once in the

declaration section!

Figure 4-3

150

Syntax: FB parameter block

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

FC parameter block (unformatted) Formal parameter

VAR_INPUT)—“—| Variable declaration I

For input parameter

—x END_VAR —
Variable declaration I—‘
VARIN.OUT)—

For in/out parameter Instance declaration IJ

Initialization not possible

The VAR_INPUT and VAR_IN_OUT keywords may be used just once in the declaration section!

Figure 4-4 Syntax: FC parameter block

You can use the declared parameters the same as other variables within the FB or FC, with
the following exception: You cannot assign values to input parameters.

From outside of an FB or an FC, you can access:

® The input and output parameters of an FB by means of structured variables (see User-
defined data types (Page 94)).

The access to the input parameter is possible only when the "Permit language
extensions" compiler option has been activated (see Global compiler
settings (Page 45) or Local compiler settings (Page 46)).

Data access to the output parameter is possible as standard.

® The return value of an FC by using the function in an expression and assigning this, for
example, to a variable (the specification of the function name calls the function and
simultaneously returns a result).

414 Statement section of FB and FC

The statement section of the FC or FB contains statements that are executed when the FC
or FB is called. There is no difference compared to the formal rules for creating a statement
section; however, you should note the information in the following table.

Note

For tips on the efficient use of parameters, please refer to Runtime-optimized Programming
in the SIMOTION Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 151

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

152

Table 4-2 Use of parameters and variables in FCs and FBs

Parameter/variable

Use

Input parameters

With the call of an FC or an FB, assign the current values to the input
parameters. These values are used for data processing within the FC or
the FB, for example, for calculations, but cannot be modified themselves.

Only for activated "Permit language extensions" compiler option (see
Global compiler settings (Page 45) or Local compiler settings (Page 46)):
The input parameters of an FB can be read and written using structured
variables, also outside the FB (e.g. in the calling source file section).

In/out parameter

You assign a variable to an in/out parameter for the call of the FB or FC.
The FC or the FB accesses this variable directly and can change it
immediately. Type conversions are not supported.

The variable assigned to an in/out parameter must be able to be directly
read and written. Therefore, system variables (of the SIMOTION device or
a technology object), I/0 variables or process image accesses cannot be
assigned to an in/out parameter.

Output parameters
(for FB only)

You assign a variable to an in/out parameter for the call of an FB using
the => operator. The value of the output parameter (result) is transferred
to the variables when the FB is closed. The output parameters of an FB
can also be read using structured variables, also outside the FB (e.g. in
the calling source file section).

An FC has no formal output parameters, because the function name
receives the return value. The function name itself is, in a sense, the
output parameter.

Local variables

Local variables are variables that are declared and used only within the
block.

All local variables (VAR ... END_VAR) are temporary in an FC, i.e. they
lose their value when the FC is terminated. The next time the FC is called,
they are reinitialized.

A differentiation between static and temporary local variables is made in
the FB:

e Static variables (VAR ... END_VAR) retain their value when the FB is
closed.

e Temporary variables (VAR_TEMP ... END_VAR) lose their value when
the FB is closed. The next time the FB is called, they are reinitialized.

The value of the local variable cannot be queried directly by the calling
block. This is only possible using an output parameter.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

4.1.5

4151

415.2

4.1 Creating and calling functions and function blocks

Call of functions and function block calls

This provides an overview of the call of the functions and function blocks.

Principle of parameter transfer

When you call an FC or FB, data exchange takes place between the calling and the called
block. The parameters to be transferred must be specified as a parameter list in the call. The
parameters are written in parentheses. Several parameters are separated by commas.

Parameter transfer

ri List of parameters 41

myCircle (lrRadius := 3, lrCircumf := myCircumf) ;

FB, FC name Input assignment Input assignment

Figure 4-5 Principle of parameter transfer for the call

Input and in/out parameters are normally specified as a value assignment. In this way, you
assign values (actual parameters) to the parameters you have defined in the declaration
section of the called block (formal parameters).

The assignment of output parameters is made using the => operator. In this way, you assign
a variable (actual parameter) to the output parameters you have defined in the declaration
section of the called block (formal parameters).

Parameter transfer to input parameters

Input assignment (unformatted)

Formal parameter Actual parameter

—>—| Identifier I Q, I Expression I—»

Identifier of the
input parameter

Figure 4-6 Syntax: Input assignment

You transfer the data (actual parameters) to the formal input parameters of an FB or FC by
means of input assignments. You can specify the actual parameters in the form of
expressions. You can use the formal input parameters in statements within the FB or FC, but

you cannot modify their values.

A short form of parameter transfer is supported, but should not be applied in conjunction with
user-defined FBs. This short form is required only for some FCs, see SIMOT/ON Basic
Functions Function Manual.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

153

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

The assignment of actual parameters is optional for an FB. If no input assignment is
specified, the values of the last call are retained because an FB is a source file section with
memory.

The assignment of an actual parameter is optional for an FC when an initialization
expression was specified for the declaration of the formal parameter.

Also refer to the examples in Calling functions (Page 156) and Calling function blocks
(instance calls) (Page 157).

You can also read and write an FB's input parameter at any time outside the FB. For further
details, see: Accessing the FB's input parameter outside the FB (Page 159).

4153 Parameter transfer to in/out parameters

In/out assignment (unformatted)

Formal parameter Actual parameter
—>—| Identifier I—®—| Variable identifier I—»
Designation of the Simple variable

in/out parameter

Figure 4-7 Syntax: In/out assignment

You transfer the data (actual parameters) to the formal in/out parameters of an FB or an FC
using in/out assignments. You can only assign a variable of the same type to the formal
infout parameter, data type conversions are not possible.

You can use and change the formal in/out parameters in statements within the FC or the FB.
The FC or the FB accesses the variable of the actual parameter directly and can change it
immediately.

Also refer to the examples in Calling functions (Page 156) and Calling function blocks
(instance calls) (Page 157).

When using the STRING data type in in/out assignments, the declared length of the actual
parameter must be greater than or equal to the length of the formal in/out parameter (see
following example).

SIMOTION ST Structured Text
154 Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

4154

4.1 Creating and calling functions and function blocks

Table 4-3 Example of the use of the STRING data type in in/out assignments

FUNCTION BLOCK REF STRING

VAR IN OUT
io : STRING[80];
END VAR

; // Statements
END_FUNCTION_BLOCK

FUNCTION BLOCK test

VAR
my fb : REF STRING;
strl : STRING[100];
str2 : STRING[50];
END VAR
my fb(io := strl); // Permitted call
my fb(io := str2); // Not permitted call,

// compiler error message

END_ FUNCTION BLOCK

The variable assigned to an in/out parameter must be able to be directly read and written.
Therefore, system variables (of the SIMOTION device or a technology object), I/O variables
or process image accesses cannot be assigned to an in/out parameter.

Please note the different parameter access times!

Parameter transfer to output parameters (for FB only)

Output assignment (unformatted)

Formal parameter Actual parameter
 — Identifier |_®_| Variable identifier F——o
Identifier of the Simple variable

in/out parameter

Figure 4-8 Syntax: Output assignment

You use an output assignment to assign the formal output parameters of an FB to the
variables (actual parameter) that accept the value of the formal output parameter when the
FB is closed.

You can use and change the formal output parameters in statements within the FB.
Also refer to the examples in Calling function blocks (instance calls) (Page 157).

Output assignments are optional for the parameter transfer. You can read and write an FB's
output parameter at any time, even outside the FB. For further details, see: Accessing the
FB's output parameter outside the FB (Page 159).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 155

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

4155 Parameter access times

The types of access and thus the parameter access times are different:

In the case of input assignments, the values of the actual parameters are copied into the
formal parameters. If large structures, such as arrays, are copied and the FC or FB is
called frequently, this can limit performance.

Values are not copied in in/out assignments. Rather, in this case a link is established
between the memory addresses of the formal parameters and those of the actual
parameters. Transferring the variables is therefore faster than input assignments
(especially where large volumes of data are involved). However, accessing variables from
the FB can be slower.

If you are using unit variables, nothing is copied to the function or function block because
these variables are valid in the entire ST source file (see Variable model (Page 184)).

Note

Using in/out parameters instead of input parameters is only faster if a large volume of
data is to be passed to the function block.

If unit variables are used predominantly instead of parameters, the resulting program
structure will be complex and confusing: object orientation, data encapsulation, multiple
use of variable names (encapsulation of validity ranges), etc., are no longer possible.

4.1.5.6 Calling a function

A function is called as follows:

<

Function with return value (data type other than VOID):

The function is placed on the right-hand side of a value assignment. It can also appear as
operand within an expression. After calling the function, its return value is used at the
appropriate point to calculate the expression.

Examples:
:=sin(x);
:= sin(in := x);
= sqgrt (1 - cos(x) * cos(x));

Function without return value (VOID data type)
The assignment consists only of the function call.

The following example is valid provided a funct1 function with the in1 and in2 input
parameters and the inout in/out parameter has already been defined.

Example:

functl (inl := varll, in2 := varl2, inoutl := wvarl3);

156

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs
4.1 Creating and calling functions and function blocks

Note

In the function itself, the result (return value) is assigned to the function name (except for
data type VOID).

4157 Calling function blocks (instance calls)

Before you call a function block (FB), you must declare an instance. You declare a variable
and enter the name of the function block as the data type. You declare this instance:

® | ocally (within VAR/END_VAR in the declaration section of a program or function block)
® Globally (within VAR_GLOBAL/END_VAR in the interface of implementation section)

® As an in/out parameter (within VAR_IN_OUT / END_VAR in the declaration section of a
function block or a function).

Instance declaration (unformatted)

o Identifier = F“?ggr?{i‘fgf ok
Instance identifier
N\ FB-ARRAY
\J specification

Function blocks must already exist.
Initialization not possible.

Figure 4-9 Syntax: Instance declaration

The instance declaration can also be an array, e.g.:

FB inst : ARRAY [1..2] OF FB name.

Note
Pay attention to the different initialization times for different variable types.

You call a function block instance in the statement section of a POU (for information about
syntax, see Figure). FB parameters are input and in-out assignments separated by commas.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 157

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

FB call (unformatted)

| Identifier |

Instance name

—| Identifier I—®—| Expression

Instance name Index
DINT data type

FB parameter I—@—»

Figure 4-10 FB call syntax
The example in the following table is applicable, assuming that the supply and moforfunction
blocks have already been defined:

e FB Supply:
Input parameters in1, in2; in/out parameter inout; output parameter out

e FB motor:
In/out parameters inout1, inout2; output parameters out1, out2

Table 4-4 Example of instance declaration, FB call, and access to output parameters

VAR
Supplyl, Supply2: Supply;
Motorl : Motor;

END VAR
Supplyl (inl := varll, in2 := exprl2, inout := varl3, out => varld) ;
Supply2 (inl := var2l, in2 := expr22, inout := var23, out => var24) ;
Motorl (inoutl := var3l, inout2 := var32, outl => var33, out2 => var34);
/]

varlb := PowerSupplyl.out;

var25 := PowerSupply2.out;

var35 := Motorl.outl;

var36 := Motorl.out2;

var4l := Motorl.outl * Motorl.out2 * (Supplyl.out + Supply2.out);

SIMOTION ST Structured Text
158 Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

4158

See also

4159

41.5.10

4.1 Creating and calling functions and function blocks

Accessing the FB's output parameter outside the FB

In addition to the output assignment (Page 155) for the call of an FB, it is always possible to
access an FB's output parameter outside the FB.

To do so, use structured variables (Page 100) in the FB instance name.output parameter
format , e.g. Supply1.out.

The instance name of the FB itself must not be used in a value assignment!

User-defined data types (Page 94)

Accessing the FB's input parameter outside the FB

In addition to the input assignment (Page 153) for the call of an FB, it is always possible to
read and write an FB's input parameter outside the FB.

To do so, use structured variables (Page 100) in the FB instance name.input parameter
format , e.g. Supply1.inf.

NOTICE

To be able to use this option, the "Permit language extensions" compiler option (see Global
compiler settings (Page 45) and Local compiler settings (Page 46)) must have been
activated.

The instance name of the FB itself must not be used in a value assignment!

Table 4-5 Example of assignment to input parameter

// Only with compiler option "Permit language extensions" activated
VAR

var fb : WORD TO 2BYTE;
var _word : WORD;
END VAR
var fb.wordin := var word;
/..
var fb();

Error sources in FB calls

Note the following when calling a function block instance:
® Only assign infout parameters with variables that are stored directly in the memory.
Only the following variables are permissible actual parameters:
— Global variables (unit variables and global device user variables)
— Local variables
— Variables of the data type of the TO (TO instances)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 159

Functions, Function Blocks, and Programs

4.1 Creating and calling functions and function blocks

The following, in particular, are permitted:
— System variables (TO variables)
— Names of technological objects from the Engineering System
— /O variables
— Absolute and symbolic process image access
® Do not use functions (FCs) as in/out parameters.

The FC return value, i.e. the FC call, cannot be an actual parameter in an in/out
assignment. You must first store the result of the FC in a local variable and then use this
variable as an actual parameter in the in/out assignment.

® Do not use constants as in/out parameters.

Only variables can be used as actual parameters of an in/out assignment because the
value is written back.

® [n/out parameters cannot be initialized.

SIMOTION ST Structured Text
160 Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

4.2 Comparison of functions and function blocks

4.2 Comparison of functions and function blocks

The differences between user-defined function blocks (FBs) and functions (FCs) are
succinctly illustrated below using a thorough example.

421 Description of example

The following exampile illustrates the differences between FBs and FCs. For simplicity, each
type of parameter is used only once, although, in reality, you can define any number of
parameters. The terms used are defined both in the detailed description Defining

functions (Page 148) and Defining function blocks (Page 149).

A block will be created as an FB and an FC in the declaration part of the implementation
section for use in calculating the circumference and the area of a circle for a radius input
variable.

An input parameter is defined for the radius.

An in/out parameter is defined for the circumference of the circle, i.e. the value of the
transferred variable is assigned directly during the call of the FB or the FC.

There are several ways of defining the area of the circle for the FB and the FC:
— For the FB, an output parameter is defined.

— Forthe FC, its return value is used; the data type of the return value is defined
appropriately.

Each FB and FC call will be recorded in a counter (local variable). The explanations for
the example state: We will see that this value will continue to be counted only in the FB.

In the program section, the FB or the FC is called and the actual parameters assigned to
the following formal parameters:

— For the FB: Input, in/out and output parameters
— For the FC: Input and in/out parameters.

The values for the circumference and the area are available after calling the FB or the
FC:

— For the FB: in the actual parameters of the in/out and output parameter.
The output parameter can be read even outside the FB.

— For the FC: in the return value of the function and in the actual parameter of the in/out
parameter.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 161

Functions, Function Blocks, and Programs

4.2 Comparison of functions and function blocks

422 Source file with comments

Table 4-6 Example of differences between FB and FC
Function block (FB)
INTERFACE
PROGRAM CircleCalcl;
END_INTERFACE
IMPLEMENTATION
FUNCTION_BLOCK Circlel
//Constant declaration
VAR CONSTANT
PI : LREAL := 3.1415 ;
END VAR
//Input parameter
VAR INPUT
Radius
END VAR
//In/out parameter
VAR IN OUT
circumference
END_ VAR
//Output parameter
VAR OUTPUT
Area LREAL;
END_ VAR
// Local variables, static
VAR
Counter DINT;
(* Variable retains its value
between calls *)
END_ VAR
//Call counter
Counter := counter + 1 ;
Circumference := 2 * PI * Radius ;
Area := PI * Radius**2
END_ FUNCTION BLOCK
PROGRAM CircleCalcl

LREAL;

LREAL;

VAR
myCirclel Circlel ;
myAreal, myArea? LREAL;
myCircf LREAL;
END VAR;
myCirclel (Radius := 3
, Circumference := myCircft
, Area => myAreal) ;
myArea?2 := myCirclel.Area ;

// myCircf has the value 18,849
// myAreal has the value 28,274
// myArea2 has the value 28,274
END PROGRAM
END IMPLEMENTATION

162

Function (FC)
INTERFACE
PROGRAM CircleCalc2;
END_ INTERFACE
IMPLEMENTATION
FUNCTION Circle2 LREAL
//Constant declaration
VAR CONSTANT

PI : LREAL := 3.1415 ;
END VAR
//Input parameter
VAR INPUT
Radius LREAL;
END VAR

//In/out parameter

VAR IN OUT
circumference

END VAR

//Output parameter

// Not possible

LREAL;

// Local variables, temporary
VAR
Counter DINT;
(* Variable will be initialized
with 0 for each call *)
END VAR
//Call counter
Counter := Counter + 1 ;
Circumference := 2 * PI * Radius ;
Circle2 := PI * Radius**2 ;
END_FUNCTION
PROGRAM CircleCalc?2

VAR
myArea LREAL;
myCirct LREAL;
END VAR;
myArea := Circle2 (Radius := 3
, Circumference := myCircf);

// myCircf has the value 18,849
// myArea has the value 28,274

END PROGRAM
END IMPLEMENTATION

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

Table 4-7

4.2 Comparison of functions and function blocks

Example of the differences between FB and FC for the previous example

Function block (FB)

Function (FC)

Comments

Reserved words for the definition:
FUNCTION_BLOCK and END_FUNCTION_BLOCK

Reserved words for the definition:
FUNCTION and END_FUNCTION

No return value permitted.

The data type of the return value must be specified after the
name (VOID data type, if no return value).

Input parameters can be used to transfer values to the FB.

Input parameters can be used to transfer values to the FC.

In/out parameters can be used to read and write the
transferred variables in the FB.

In/out parameters can be used to read and write the
transferred variables in the FC.

Output parameters can be used to return values from an FB.

No output parameters permitted.

The local variables are static, i.e. they retain their value
between FB calls.

The Counterlocal variable is incremented; its value is
retained when the FB is terminated. The variable is
therefore incremented each time the FB is called.

To see this behavior: Assign the value of the local variables
to a global variable in the FB. Monitor the value of the global
variable after repeated FB calls.

The local variables are temporary, i.e. they lose their value
when the function is terminated.

Although the Counterlocal variable is incremented, its value
is lost when the FC is exited. The variable is reinitialized (to
0 in the example) at the next FC call.

To see this behavior: Assign the value of the local variables

to a global variable in the FC. The value of the global
variable remains unchanged after repeated FC calls.

In the statement section, the results (return values) are
assigned to the output or in/out parameters.

In the statement section, the result (return value) is
assigned to the function name (except when VOID data type
is specified).

In the declaration section of the block that executes the call,
an instance of the FB is declared: you declare a variable
and specify the name of the FB as its data type. You use the
declared instance name to call the FB and to access its
output parameters.

The name of the FB itself must not be used in the statement
section.

e You assign a variable to the in/out parameters when the
FB instance is called.

¢ With the call, you can assign the output parameters to a
variable.

e You can read an FB's output parameters, even outside
the FB. For this purpose, use structured variables in the
following format:

FB-instancename.outputparameter.

e You assign a variable to the in/out parameters when the
FB instance is called.

e To obtain the return value of the FC:
— Assign the function to a variable.

— Use the function in an expression on the right side of
a value assignment.

The program that executes the call cannot access variables
other than the in/out variables and output parameters of the
FB.

Exception: For activated "Permit language extensions"
compiler option (see Global compiler settings (Page 45) or
Local compiler settings (Page 46)), the called program can
also access the input parameters of an FB. For this
purpose, use structured variables in the following format:
FB-instancename.inputparamefer.

The program that executes the call cannot access any
variables other than the return value.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

163

Functions, Function Blocks, and Programs

4.3 Programs

4.3 Programs
Programs are a series of statements placed between the PROGRAM and END_PROGRAM
keywords.

Program (unformatted)

Program identifier

-+ PROGRAM)— Identifier |—‘

\—L Program declaration section AL Statement section _C END_PROGRAM)_>

Figure 4-11 Syntax: Program

Programs are declared in the Implementation section (Page 171) of an ST source file and
are comparable with the FB. Static local variables (VAR...END_VAR) or temporary local
variables (VAR_TEMP...END_VAR) can be created, for example. However, they do not have
any formal parameters and so cannot be called with arguments. Examples for programs are
contained in the Source file with comments (Page 162) and Source text of the sample
program (Page 64) sections.

Assignment of a program in the execution system

By default, programs in the execution system are assigned to a task. The execution behavior
of the programs, e.g. the associated task determines the initialization of the variables. For
more information about the execution system and the tasks, refer to the SIMOTION Basic
Functions Function Manual. This requires that the program in the Interface

section (Page 170) of the ST source file must be specified as the program organization unit
to be exported.

Calling a program in the program ("program in program")

Optionally, a program can also be called within a different program or a function block. This
requires that the following compiler options be activated (see Global settings on the
compiler (Page 45) and Local settings on the compiler (Page 46)):

1. "Permit language extensions" for the program source of the calling program or function
block and

2. "Create program instance data only once" for the program source of the calling program.

The call is performed as for a function with parameters and return value, see following
example.

SIMOTION ST Structured Text
164 Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs

4.3 Programs

NOTICE

The activated "Create program instance data only once" compiler option causes:

e The static variables of the programs (program instance data) are stored in a different
Memory area (Page 194). This also changes the Initialization behavior (Page 204).

e All called programs with the same name use the same program instance data.

Table 4-8 Example for calling a program in a program

PROGRAM my prog

P/
END PROGRAM

PROGRAM main prog
P S
my_prog () ;
P/

END PROGRAM

This can be used to perform most of the programming of the assignment of the programs to
the tasks. In the execution system, only each associated calling program needs to be
assigned to the tasks.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 165

Functions, Function Blocks, and Programs

4.4 Expressions

4.4 Expressions

166

The expression is a special case of a function declaration:
® The data type of the return value is defined as BOOL and is not specified explicitly.
It is used in conjunction with the WAITFORCONDITION statement (Page 139).

An expression can only be declared in the implementation section of the ST source file.

Expression (unformatted)

Expression identifier

—+(EXPRESSION)—| Identifier |—‘

Expression declaration l Statement _(END_EXPRESSION]

section section

Note that an expression of the BOOL data type must be assigned to the expression
identifier in the statement section!

Figure 4-12 Syntax: Expression

Optionally, the following can be declared in the declaration section:

Local (temporary) variables

Local constants
User-defined data types (UDT)
® Input and in/out parameters (as of Version V4.1 of the SIMOTION kernel)

The following can be accessed in the statement section:
® To the local variables of the expression
e To the input and in/out parameters (provided their declaration is permitted)

® Unit variables

Global device variables, I/O variables, and the process image

An expression of data type BOOL must be assigned to the expression name in the statement
section of the expression (see figure).

Note
The statement section of the expression cannot contain any function calls or loops.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Functions, Function Blocks, and Programs
4.4 Expressions

Example

The following example assumes that the feeder program is running in a MotionTask. The
option Activation after StartupTask is selected for this MotionTask. The assignment of
programs to tasks is performed in SIMOTION SCOUT (see SIMOTION Motion Control Basic
Functions function description).

Table 4-9 Example of the use of an EXPRESSION and the WAITFORCONDITION statement

INTERFACE

USEPACKAGE cam;

PROGRAM feeder; // in MotionTask 1
END INTERFACE

IMPLEMENTATION
// Condition for WAITFORCONDITION statement
EXPRESSION automaticExpr
automaticExpr := IOfeedCam; // Digital input
END_EXPRESSION

PROGRAM feeder

VAR
retval : DINT ;

END VAR ;

retVal := enableAxis (axis := realAxis,
enableMode := ALL,
servoCommandToActualMode := INACTIVE,
nextCommand := WHEN COMMAND DONE,
commandId := getCommandId());

// Wait until the start condition is satisfied
WAITFORCONDITION automaticExpr WITH TRUE DO
// High-priority execution of all statements
// to the END WAITFORCONDITION command

retVal := pos (axis := realAxis,
positioningMode := RELATIVE,
position := 500,
velocityType := DIRECT,
velocity := 300,
velocityProfile := TRAPEZOIDAL,
mergeMode := IMMEDIATELY,
nextCommand := WHEN MOTION DONE,
commandId:= getCommandId());

END WAITFORCONDITION;

retVal := disableAxis (axis := realAxis,
disableMode := ALL,
servoCommandToActualMode := INACTIVE,
nextCommand := WHEN COMMAND DONE,
commandId := getCommandId());

END_ PROGRAM
END IMPLEMENTATION

Further examples are contained in the SIMOTION Motion Control Basic Functions Function
Manual. In particular, the manual describes how, as of Version V4.1 of the

SIMOTION kernel, you use an EXPRESSION with parameters and, for example, program a
time monitoring in a WAITFORCONDITION statement.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 167

Integration of ST in SIMOTION 5

This section describes the interoperability of ST programs and SIMOTION SCOUT.

5.1 Source file sections

An overview of the meaning of the source file sections was provided in Structure of an ST
source file (Page 86). This section describes details, such as the syntax of the sections and
how to use them to import and export data between several ST source files.

51.1 Use of the source file sections

You must follow certain structure and syntax rules in your source file sections (modules), so
that the ST source file can be compiled. A few general guidelines are presented here; details
on source file sections are presented later in this section:

e \When creating the source file, you should always pay attention to the order of the source
file sections. A section that is to be called must always precede the calling section;
otherwise the section that is to be called will not recognize the calling section.

For example, variables must always be declared before they are used and functions must
be defined before they are called.

® The source text for the most common source file sections — program, function or function
block — consists of the following:

Start of section with reserved word and identifier
Declaration section (optional)
Statement section

End of section with reserved word

e |dentifiers for source file sections — hereinafter referred to as name or name_/ist - follow
the general syntax rules for identifiers (Identifiers in ST (Page 73)).

Note

A template with all possible source file sections is available in the online help.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008 169

Integration of ST in SIMOTION

5.1 Source file sections

5111 Interface section

The interface section contains statements for importing and exporting data (data types,
variables, function blocks, functions, and programs). Technology packages and libraries can
also be downloaded.

The interface section has the following syntax:

Table 5-1 Syntax of interface section

Syntax

INTERFACE
// Interface statements (optional)
END INTERFACE

An individual identifier of the section cannot be specified.
Optionally, interface statements exist in the following order between reserved words INTERFACE
and END_INTERFACE.
1. Specification of utilized technology package. Syntax:
USEPACKAGE tp-name [AS namespace];
For more details, refer to the SIMOTI/ON Basic Functions Function Manual.
2. Specification of utilized libraries.
Syntax:
USELIB library-name-list [AS namespace];
For more information, see "Using data types, functions and function blocks from
libraries (Page 230)".
3. Reference to other units in order to use their exported components.
Syntax:
USES unit name-list;
For more infarmation, see "USES statement in an importing unit (Page 181)".
4. Declarations and specifications for the export
— Data type definitions (Page 176):
User-defined data types (UDT) that are valid in the entire ST source file and that are to be
exported
— Variable declarations (Page 177):
Unit variables and unit constants valid in the entire ST source file and exported.
Permissible keywords: See table in "Variable declaration (Page 177)".
— Information regarding program organization units (POU) to be exported.
Syntax:
FUNCTION fc name;

FUNCTION BLOCK fb name;
PROGRAM program name;

All technology packages, libraries, imported units, data type declarations, variable declarations
and program organization units listed in the interface section will be exported. For more
information on export, see "Interface section of an exporting unit (Page 179)".

Sequence

The interface section is the first section of an ST source file'.
The order of the interface statements 1 to 4 is fixed.

Within number 4, any order is permitted. The individual declaration blocks for data type definitions
and variable definitions can appear more than once.

Attention: Identifiers must be declared before they are used.

Frequency

Once per ST source file

Mandatory section

yes

1 Optionally, the unit statement can precede the interface section (see "Identifier of the unit (Page 179)".

170

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.1 Source file sections

5.1.1.2 Implementation section

The implementation section contains the executable sections, comprising the main part of
the ST source file.

The implementation section has the following syntax:

Table 5-2 Syntax of the implementation section

Syntax

IMPLEMENTATION
// Implementation statements (optional)
END IMPLEMENTATION

An individual identifier of the section cannot be specified.

Optionally, implementation statements (main part of the ST source file) exist in the following order
between the reserved words IMPLEMENTATION and END_IMPLEMENTATION:

1. Reference to other units in order to use their exported components. Syntax:
USES unit name-1list;
For more infgrmation, see "USES statement in an importing unit (Page 181)".
2. Declarations
— Data type definitions (Page 176):
User-defined data types (UDT) that are valid in the entire ST source file
— Variable declarations (Page 177):
Unit variables and constants that are valid in the entire ST source file
Permissible keywords: See table in "Variable declaration (Page 177)".
3. Program organization units (POUs) (Page 171)

Sequence

Always follows the interface section.

The order of the implementation statements indicated above is mandatory; within number 2 and 3,
any order is permitted:

Attention: Identifiers must be declared before they are used.

Frequency

Once per ST source file

Mandatory section

yes

5.1.1.3 Program organization units (POUs)

POUs are the executable source file sections:

Functions (FC) (Page 172)
Expressions (Page 174)
Function blocks (FB) (Page 173)
Programs (Page 174)

Note
Called POUs always precede the calling POUs so that they are recognized by the latter.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 171

Integration of ST in SIMOTION
5.1 Source file sections

5.1.1.4 Functions (FCs)

Functions (FC) are classified as program organization units (POUs). Functions are
paramterized source file sections with temporary data that can be called from programs and
function blocks. All internal variables lose their values when the function is exited and are
reinitialized the next time the function is called.

FCs have the following syntax:

Table 5-3 Syntax of functions (FCs)

Syntax FUNCTION name : function data type

// Declaration section

// Statement section

END_ FUNCTION

name stands for the identifier of the function, while function_data_type stands for the data type of
the return value.

Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 177)".

Note the following for functions with function_data_type <> VOID: In the statement section, an
expression of data type function_data_type must be assigned to the function identifier!

Sequence FCs can only be defined in the implementation section.
Pay attention to the order: FCs must come before the POUs from which they are called!
The declaration section (Page 175) must precede the statement section (Page 176).

Frequency Any number of times per ST source file

Mandatory section no

For information on functions (FC), see Creating and calling functions and function
blocks (Page 147).

SIMOTION ST Structured Text
172 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.1 Source file sections

5115 Function blocks (FBs)

Function blocks (FB) are classified as program organization units (POUs). They are source
file sections with static data that can be called from programs and assigned parameters
(internal variables retain their value between calls). Since an FB has memory, its output
parameters can be accessed at any time and from any point in the user program.

FBs have the following syntax:

Table 5-4 Syntax of the function blocks

Syntax

FUNCTION BLOCK name

// Declaration section

// Statement section
END_FUNCTION_BLOCK

name stands for the identifier of the function block.

Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 177)".

Special features

Before you call a function block (FB), you must declare an instance: You declare a variable and
enter the identifier of the function block as the data type. You can declare the instance locally
(within VAR / END_VAR in the declaration sections of a program or a function block).

You can declare the instance globally (within VAR_GLOBAL / END_VAR in the interface or
Implementation section), however, not using function blocks defined in the same ST source file.
This is possible only with function blocks made available by imported program source files and
libraries.

You cannot declare an instance of an FB in FCs.

Sequence FBs can only be defined in the implementation section.
Pay attention to the order: FBs must precede the POE in which an instance is declared as local
variable.
The declaration section (Page 175) must precede the statement section (Page 176).
Frequency Any number of times per ST source file

Mandatory section

no

For information on the FB, see Creating and calling functions and function
blocks (Page 147).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 173

Integration of ST in SIMOTION

5.1 Source file sections

5.1.1.6 Programs

Programs are classified as program organization units (POUs). They are called on the target
system according to their task assignment (see Configuring the execution system in the
SIMOTION Basic Functions Function Manual) and can call FCs and FBs.

Programs have the following syntax:

Table 5-5 Syntax of the programs

Syntax

PROGRAM name

// Declaration section

// Statement section

END PROGRAM

name stands for the name of the program.

Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 177)".

Sequence

Programs can only be defined in the implementation section.

It is advantageous to place programs after expressions, FCs, and FBs. This enables the program
to recognize and use the source file sections.

The declaration section (Page 175) must precede the statement section (Page 176).

Frequency

Any number of times per ST source file

Mandatory section

no

For

more information about programs, see Programs (Page 164).

5117 Expressions

Expressions are a special case of a function declaration with the specified data type BOOL
of the return value. The expression within the EXPRESSION <expression identifier> ...
END_EXPRESSION reserved words assigned to the function name is evaluated.

You can use the WAITFORCONDITION construct to wait directly for a programmable event
or condition in a MotionTask. The statement suspends the task that called it until the

con

174

dition (expression) is true.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.1 Source file sections

Expressions have the following syntax:

Table 5-6 Syntax of the expressions

Syntax EXPRESSION name

// Declaration section

// Statement section

END EXPRESSION

name stands for the identifier of the expression.

Permissible keywords for the variable declaration in the declaration section: See table in "Variable
declaration (Page 177)".

Attention: In the statement section, an expression of data type BOOL must be assigned to the
expression identifier!

Sequence An expression can only be declared in the implementation section of an ST source file.

Therefore, expressions precede the program in which they are called from a
WAITFORCONDITION control structure.

The declaration section (Page 175) must precede the statement section (Page 176).

Frequency Any number of times per ST source file

Mandatory section no

For more information on expressions, see Expressions (Page 166). In conjunction with the
WAITFORCONDITION statement, see SIMOTION Basic Functions Function Manual.

51.1.8 Declaration section

The declaration section of a program organization unit (POU) contains the data type
definition and the variable declaration of the POU.

The declaration section has the following structure:

Table 5-7 Structure of the declaration section

Structure // Data type definition
// Variable declaration
Sequence The declaration section has no explicit keywords at the start or end. It begins after the keyword of

the respective program organization unit (POU) and ends with the first executable statement of
the statement section.

It contains the following in any order:
e Data type definitions (Page 176):

User-defined data types (UDT) that are valid locally in the POU
e Variable declarations (Page 177):

Variables and constants that are valid locally in the POU

Permissible keywords according to the respective POU: See table in "Variable
declaration (Page 177)".

Attention: Identifiers must be declared before they are used.

Frequency Once per POU

Mandatory section no

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 175

Integration of ST in SIMOTION

5.1 Source file sections

5.1.1.9 Statement section
The statement section of a POU consists of the individual (executable) statements.

The statement section has the following structure:

Table 5-8 Structure of the statement section

Structure // Statements

Sequence The statement section has no explicit keywords at the start or end. It begins after the declaration
section and ends with the keyword of the respective POU.

Frequency Once per POU

Mandatory section no

For more information on statements, see
® Value assignments and expressions (Page 112)
e Control statements (Page 130)

e (Calling functions and function blocks (Page 153)

5.1.1.10 Data type definition

For the data type definition, you specify user-defined data types (UDT). You can use them
for variable declarations. UDTs can be defined in the interface section, the implementation
section, and the declaration section of FCs, FBs, and programs.

The data type definition has the following syntax:

Table 5-9 Syntax of the data type definition

Syntax TYPE
name : data type specification;
//
END_TYPE

name represents the name of the individual data type that you use for the Variable declarations.
data_type_specification stands for any data type or a structure. Any number of individual data
types can appear between TYPE and END_TYPE.
Sequence You can define UDTs as follows:
¢ In the Interface section:

The UDTs are recognized within the ST source file and will be exported

They can be used in the interface and implementation section for declaration of unit variables
and in all POUs for declaration of local variables.

In addition, they can be used in all units which import this ST source file (in SIMOTION ST
with the USES statement).

¢ In the Implementation section:
The UDTs are recognized within the ST source file

They can be used in the implementation section for declaration of unit variables and in all
POUs for declaration of local variables.

¢ In the Declaration section of a POU (FC, FB, program, expression)
The UDTs are only recognized locally within the POU
They can only be used within the POU for declaration of local variables.
UDTs must be defined before they are used in a variable declaration.

SIMOTION ST Structured Text
176 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.1 Source file sections

Frequency The TYPE / END_VAR declaration block may appear more than once in a source file section; any
number of UDTs are possible within a declaration block.

Mandatory section no

For more information about the UDT, see User-defined data types (Page 94).

5.1.1.11 Variable declaration

A declaration section contains variable declarations and can itself be contained in FCs, FBs,
and programs (POUs) as well as in the interface section and the implementation section.

The variable declaration has the following syntax:

Table 5-10 Syntax of variable declaration

Syntax variable type
name list : data type;
//

END VAR

variable_type represents the keyword of the variable type being declared. The permitted
keywords depend on the source file section.

¢ In the Interface section or Implementation section of an ST source file:
VAR GLOBAL: Non-retentive unit variable
VAR GLOBAL CONSTANT: Unit constant
VAR GLOBAL RETAIN: Retentive unit variable
e In the Declaration section of a function:
VAR: Local variable
VAR CONSTANT: Local constant
VAR INPUT: Input parameter
VAR IN OUT: Infout parameter
¢ In the Declaration section of a function block:
VAR: Local variable
VAR CONSTANT: Local constant
VAR_TEMP: Temporary variable
VAR_INPUT: Input parameter
VAR_OUTPUT: Output parameter
VAR IN OUT: Infout parameter
¢ In the Declaration section of a program:
VAR: Local variable
VAR CONSTANT: Local constant
VAR_TEMP: Temporary variable
e In the Declaration section of an expression:
VAR: Local variable
VAR CONSTANT: Local constant
VAR INPUT: Input parameter (as of Version 4.1 of the SIMOTION kernel)
VAR IN OUT: Infout parameter (as of Version 4.1 of the SIMOTION kernel)
name_listis the list of identifiers of the dafa_type data type to be declared.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 177

Integration of ST in SIMOTION
5.1 Source file sections

Sequence The variable is declared:

¢ In the Interface section of the ST source file:
Permissible keywords: see table field syntax.
The unit variables are recognized within the ST source file and will be exported.
They can be used in all POUs of the ST source file.

In addition, they can be used in all units which import this ST source file (in SIMOTION ST
with the USES statement).

¢ In the Implementation section of the ST source file:
Permissible keywords: see table field syntax.
The unit variables are recognized within the ST source file.
They can be used in all POUs of the ST source file.
¢ In the Declaration section of a POU (FC, FB, program, expression)
Permissible keywords according to the type of POU: See table cell Synfax.
The variables are only recognized locally within the POU.
They can only be used within the POU for declaration of local variables.
Exceptions:
— You can also access the output parameters of a function block outside the FB.

— You can access the input parameters of a function block outside the FB provided the
"Permit language extensions" compiler option has been activated. See Global settings of
the compiler (Page 45) and Local settings of the compiler (Page 46).

Variables must be declared before they are used.
Frequency The number of times the variable_type / END_VAR declaration block of a specific variable type
can appear depends on the associated source file section:
¢ In the interface and implementation section of the ST source:
The declaration blocks may appear more than once.
¢ In the declaration section of a POU (FC, FB, program, expression):

Each declaration block (other than VAR CONSTANT / END_VAR) may appear just once in the
declaration section.

Permitted declaration blocks and keywords depending on the associated source file section: See
table cell Syntax.

Any number of variable declarations are possible within a declaration block.

Mandatory section no

For more information about variable declarations, see Variable declaration (Page 105).

SIMOTION ST Structured Text
178 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.1 Source file sections

5.1.2 Import and export between ST source files

ST applies the unit concept, where you can access the global variables, data types,
functions (FCs), function blocks (FBs), and programs of other source files. Thus, for
example, you can compile reusable subroutines and make them available.

51.21 Unit identifier

Below, unit refers to a program source file (e.g. ST source file, MCC source file). The name
of the program source file defined in SIMOTION SCOUT is applied as the identifier.

Optionally, you can set the unit statement as first statement for an ST source file (preceding
the interface section). Syntax:

UNIT name;

name corresponds to the name of the ST source file defined in SIMOTION SCOUT, see Add
ST source (Page 21) or Change the properties of an ST source file (Page 23).

The unit statement is ignored if the name specified there differs from the name of the ST
source file.

5.1.2.2 Interface section of an exporting unit

You can enter the following constructs in the interface section of an exporting unit. The
syntax of the constructs is only implied here, for details, see "Interface section (Page 170)".

® The type declarations to be exported
TYPE
User-defined data types with their complete declaration.
® The variable declarations to be exported
VAR_GLOBAL, VAR_GLOBAL RETAIN, or VAR_GLOBAL CONSTANT

Non-retentive and retentive unit variables and unit constants with their complete
declaration.

® POUs (functions, function blocks, and programs) to be exported

Specify each POU (function, function block, or program) to be exported with the relevant
keyword. Close each entry with a semicolon.

— FUNCTION_BLOCK 7b_name;
— FUNCTION fc_name;
— PROGRAM program_name;

Specifications can be made in any order; the POU itself is programmed in the
implementation section of the ST source file.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 179

Integration of ST in SIMOTION

5.1 Source file sections

180

Note

The following further specifications are possible in the interface section, they are listed
before the exported data types, variables and POU:

1. Specification of utilized technology packages (USEPACKAGE ...).

2. Specification of utilized libraries (USELIB ...).

3. Reference to other units in order to use their exported units (USES ...).

These imported technology packages, libraries and units are also exported. For inheritance,
see "USES statement in an importing unit (Page 181)".

You must adhere to the order presented for the specifications in the interface section of a
unit (ST source file), see "Interface section (Page 170)". Otherwise, error-free compilation of
the ST source file will not be possible.

The programs of an ST source file must be listed in the interface section so that they can be
assigned to a task in the execution system (see Configuring the execution system in the
SIMOTION Basic Functions Function Manual). The compiler outputs a warning message if
programs cannot be exported in the interface section of an ST source file.

Functions and function blocks that are only used in the ST source file should not be listed in
the interface section.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.1 Source file sections

51.2.3 Example of an exporting unit

Below is an example of an exporting unit (myUnit_A). It is imported by myUnit_B (see
Example of an importing unit (Page 183)).

Table 5-11 Example of an exporting unit

UNIT myUnit A; // Optional, name of the ST source file
INTERFACE
// ... USES statement also possible here
TYPE // Declaration of data types to be exported
color : (RED, GREEN, BLUE);
END TYPE
VAR GLOBAL
cycle : INT := 1; // Declaration of the
// unit variables to be exported
END VAR
FUNCTION myFC; // Export statement of an FC
FUNCTION BLOCK myFB; // Export statement of an FB
PROGRAM myProgram A; // Export statement of a program

// (to interface with the execution system)
END_INTERFACE

IMPLEMENTATION
Function myFC : LREAL // Function written out
; // ... (Statements)
END_ FUNCTION

Function BLOCK myFB // Function block written out
; // ... (Statements)
END_FUNCTION BLOCK

PROGRAM myProgram A // Program written out
; // ... (Statements)
END PROGRAM
END IMPLEMENTATION

5.1.24 USES statement in an importing unit

Enter the following statement in the interface or implementation section of an importing unit:

USES unit name-1list

unit_name-listis a list of units separated by commas from which the modules are to be
imported.

Example:

USES unit 1, unit 2, unit 3;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 181

Integration of ST in SIMOTION

5.1 Source file sections

This enables you to access the following elements specified or declared in the interface
section of the imported unit (e.g. ST source file, MCC source):

User-defined data types (UDT)
Unit variables and unit constants

Programs, functions and function blocks

Imported technology packages, libraries and units

You can use the imported elements as if they existed in the current unit.

Note

The keyword USES can only occur once in the interface section or in the implementation
section of a unit. When multiple units are to be imported, enter them as a list separated by
commas after the keyword USES.

The USES statement can appear in either the interface section or the implementation section
of a unit. This has far-reaching implications:

Table 5-12 Implications regarding placement of USES statement in interface section or in implementation section
Effect USES statement USES statement
in the interface section in the implementation section
Inheritance The current unit continues exporting the Inheritance is interrupted.

imported unit; the imported unit is inherited by
all other units that access the current unit.
Example:

1. Unit B imports Unit A in the interface
section.

2. Unit Cin turn imports Unit B.

3. Then Unit C also imports Unit A
automatically.

A—»B—»C 3A—>C

Because of inheritance, Unit A must not be
imported explicitly into Unit C.

Example:

1. Unit B imports Unit A in the implementation
section.

2. Unit C in turn imports Unit B.

3. Then Unit C has no automatic access to
Unit A.

Unit C must explicitly import Unit A if it wants to
access Unit A.

Variable declaration

The declaration of a unit variable of an imported
data type is possible in:

¢ Interface section
¢ Implementation section

The declaration of a unit variable of an imported
data type is only possible in the implementation
section.

182

Note

You will find tips for use of unit variables in the SIMOTION Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.1 Source file sections

5.1.2.5 Example of an importing unit

Below is an example of an importing unit (myUnit_B). It imports the unit myUnit_A from
Example of an exporting unit (Page 181).

Table 5-13 Example of an importing unit

UNIT myUnit B; // Optional, name of the ST source file
INTERFACE
// ... if required, USES statement

PROGRAM myProgram B;
// Specification of programs to be exported, FB, FC
// Data types and unit variables

END INTERFACE

IMPLEMENTATION
USES myUnit A; // Specification of unit to be imported

VAR GLOBAL

myInstance : myFB; // Declaration of an instance
// of the imported FB
mycolor : color; // Declaration of a variable

// of the imported data type
END VAR

PROGRAM myProgram B

mycolor := GREEN; // Value assignment to a variable of the
// data type to be imported
cycle := cycle + 1; // Value assignment to

// imported variable
END PROGRAM
END IMPLEMENTATION

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 183

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5.2 Variables in SIMOTION

This summarizes the variables available in ST.

5.21 Variable model

The following table shows all the variable types available for programming with ST.

e System variables of the SIMOTION device and the technology objects

e (Global user variables (I/O variables, device-global variables, unit variables)

® | ocal user variables (variables within a program, a function or a function block)

System variables

Variable type

Meaning

System variables of the
SIMOTION device

System variables of
technology objects

Each SIMOTION device and technology object has specific system variables. These can be
accessed as follows:

e Within the SIMOTION device from all programs
e From HMI devices

You can monitor system variables in the symbol browser.

Global user variables

Variable type

Meaning

I/O variables

You can assign symbolic names to the I/0O addresses of the SIMOTION device or the
peripherals. This allows you to have the following direct accesses and process image
accesses to the 1/O:

e Within the SIMOTION device from all programs
e From HMI devices

You create these variables in the symbol browser after you have selected the I/O element
in the project navigator.

You can monitor I/O variables in the symbol browser.

Global device variables

User-defined variables which can be accessed by all SIMOTION device programs and HMI
devices.

You create these variables in the symbol browser after you have selected the GLOBAL
DEVICE VARIABLES element in the project navigator.

Global device variables can be defined as retentive. This means that they will remain stored
even when the SIMOTION device power supply is disconnected.

You can monitor global device variables in the symbol browser.

184

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Variable type

Meaning

Unit variables

User-defined variables that all programs, function blocks, and functions (e.g. ST source,
MCC source, LAD/FBD source) can access within a unit.
Declare these variables in the unit:

¢ In the interface section:
You can import these variables into other units (ST source files, MCC source files,
LAD/FBD source files) and they are also available on HMI devices as standard.
¢ In the implementation section:
You can only access these variables within the associated unit.
You can declare unit variables as retentive. This means that they will remain stored even
when the SIMOTION device power supply is disconnected.

You can monitor unit variables in the symbol browser.

Local user variables

Variable type

Meaning

User-defined variables which can be accessed from within the program (or function,
function block) in which they were defined.

Variable of a program
(program variable)

Variable is declared in a program. The variable can only be accessed within this program. A
differentiation is made between static and temporary variables:

e Static variables are initialized according to the memory area in which they are stored.
Specify this memory area by means of a compiler option. By default, the static variables
are initialized depending on the task to which the program is assigned (see SIMOTION
Basic Functions Function Manual).

You can monitor static variables in the symbol browser.
e Temporary variables are initialized every time the program in a task is called.
Temporary variables cannot be monitored in the symbol browser.

Variable of a function (FC
variable)

Variable is declared in a function (FC). The variable can only be accessed within this
function.

FC variables are temporary; they are initialized each time the FC is called. They cannot be
monitored in the symbol browser.

Variable of a function block
(FB variable)

Variable is declared in a function block (FB) source. The variable can only be accessed
within this function block. A differentiation is made between static and temporary variables:

e Static variables retain their value when the FB terminates. They are initialized only when
the instance of the FB is initialized; this depends on the variable type with which the
instance of the FB was declared.

You can monitor static variables in the symbol browser.

e Temporary variables lose their value when the FB terminates. The next time the FB is
called, they are reinitialized.

Temporary variables cannot be monitored in the symbol browser.

Further information is available from the following sources:

® |n the corresponding list manuals, you can find the compressed information on all system
variables of the SIMOTION technology packages and SIMOTION devices.

® For more details on the use of system variables of technology objects, please refer to the
SIMOTION Motion Control Technology Objects Function Manuals.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008 185

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

See also

5.2.11

186

In the SIMOTION Basic Functions Function Manual you can find information on how to
access system variables and configuration data.

This documentation contains information on:

— Access to I/O addresses with /O variables (see Direct access and process image of

cyclic tasks (Page 214))

— Process image access (see),

— Creation and use of global device variables (see Use of global device
variables (Page 193)),

— Use of unit variables and local variables (static and temporary variables).

Note

Please note that downloading the ST source file to the target system and running
tasks affect variable initialization and thus the contents of the variables, see Time of
the variable initialization (Page 200).

Access to fixed process image of the BackgroundTask (Page 220)

Unit variables

Unit variables are valid throughout the entire ST source file, i.e. they can be accessed in any
source file section.

Unit variables are declared in the interface and/or implementation section of an ST source
file; the location of the declaration determines the validity of the unit variable:

If you declare the unit variables in the interface section, you create variables that can be
used in other program sources (e.g. ST source files, MMC units). For more on importing
and exporting between program source files, see Import and export between ST source
files (Page 179).

By default, these unit variables are also available on HMI devices. The total size of the
unit variables that can be exported to HMI devices is limited to 64 KB per unit.

If you declare the unit variables in the implementation section, you create variables that
can be used by all program organization units (POUs) of the current source file.

You can change the default setting for the HMI export of the unit variables using a pragma
within a declaration block, see Variables and HMI devices (Page 208) and Controlling
compiler with attributes (Page 247).

You can define unit variables with different behavior, e.g. in case of power failure:

Non-retentive unit variables (keyword VAR_GLOBAL): its value is lost in the event of a
power failure.

Retentive unit variables (keyword VAR_GLOBAL RETAIN): its value remains in the event
of a power failure.

Unit constants (keyword VAR_GLOBAL CONSTANT): its value is retained unchanged
(see Constants (Page 111)).

You will find tips for the efficient use of unit variables in the SIMOTION Basic Functions
Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

521.2 Non-retentive unit variables

Non-retentive unit variables lose their value in the event of a power failure.

Unit Variables / Global Variable Block (Unformatted)

Variable declaration

END_VAR)—»

VAR_GLOBAL) i [SymbocPl access

I —

Instance
declaration

Figure 5-1 Syntax: Unit variables

This declaration block may appear more than once within an interface or implementation
section. You specify the variable name and data type for the variable declaration (see
Overview of all variable declarations (Page 106) and Initialization of variables or data
types (Page 107)).

For the scope of the declaration and the HMI export, see Unit variables (Page 186).

Note

For initialization of the non-retentive unit variables:

¢ See Initialization of non-retentive global variables (Page 202).

e The behavior during downloading can be set (Options > Settings menu command, Project
Download tab, Initialize all non-retentive device-global variables and program data
checkbox)

e The type of version ID and therefore the initialization behavior on downloading depends
on the SIMOTION Kernel version. For details, see Version ID of global variables and their
initialization during download (Page 207).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 187

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5213

188

ce declaration

Table 5-14 Examples of non-retentive unit variables
INTERFACE
VAR GLOBAL //These variables can be exported.
rotationl : INT;
fieldl : ARRAY [1..10] OF REAL;
flagl BOOL;
motorl : motor; // Instan
END VAR
END INTERFACE
IMPLEMENTATION

//These variables cannot be
// MotionTask.

VAR GLOBAL

exported

// Instance declaration

rotation2 : INT;
field2 : ARRAY [1..10] OF REAL;
flag2 BOOL;
motor?2 : motor;
END VAR

END IMPLEMENTATION

Retentive unit variables

Retentive unit variables permit permanent storage of vari
power failure.

able values even throughout a

Retentive variable block (unformatted)

VAR_GLOBAL RETAIN) . Variable declaration

_._C

END_VAR)—>

Figure 5-2 Syntax: Retentive variable block

This declaration block may appear more than once within an interface or implementation

section. You specify the variable name and data type for
Overview of all variable declarations (Page 106) and Initi
types (Page 107)).

the variable declaration (see
alization of variables or data

For the scope of the declaration and the HMI export, see Unit variables (Page 186).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Note

For initialization of the retentive unit variables:

— See Initialization of retentive global variables (Page 201).

— The behavior during downloading can be set (Options > Settings menu command,
Project Download tab, Initialize all retentive device-global variables and program data
checkbox).

— The type of version ID and therefore the initialization behavior on downloading
depends on the SIMOTION Kernel version. For details, see Version ID of global
variables and their initialization during download (Page 207).

The amount of memory available for retentive variables depends on the device (see

quantity framework in the SIMOTION SCOUT Configuration Manual).

To make efficient use of limited memory space, use the memory in a single ST source file
and sort the variables in descending order!

Check the capacity utilization of the retentive memory in SIMOTION SCOUT.

In online mode, call the device diagnostics of the SIMOTION device to be checked (see
online help). In the System utilization tab under Retentive data, you can see how much
memory is available.

Table 5-15 Examples of retentive variables

VAR GLOBAL RETAIN

Measuring field : ARRAY[1.0.10] OF REAL;
Pass : INT;
Switch: BOOL;

END_VAR

5214 Local variables (static and temporary variables)

Local variables are valid only in the source file section (e.g. program, FC or FB) in which
they were declared. We distinguish between the following:

Static variables (Page 191):

Static variables retain their value over all passes of the source file section (block
memory).

Temporary variables (Page 192):

Temporary variables are initialized each time the source file section is called again.

See also: Initialization of local variables (Page 204).

Note

Local variables cannot be accessed outside the source file section in which they were
declared.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 189

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

The following table provides an overview of the declaration of static and temporary variables.
It shows the source file sections in which these variables can be declared and the keywords

that can be used to declare them.

Table 5-16 Keywords for declaring static and temporary variables depending on source file section.

Source file section

Keywords for the declaration

Static variables

Temporary variables

Function - VAR /END_VAR
or
VAR_INPUT / END_VAR
or
VAR_IN_OUT / END_VAR?
Expression - VAR /END_VAR

or
VAR_INPUT / END_VAR
or
VAR_IN_OUT / END_VAR?

Function block

VAR / END_VAR'
or
VAR_INPUT / END_VAR'
or
VAR_OUTPUT / END_VAR!

VAR_TEMP / END_VAR
or
VAR_IN_OUT / END_VAR?

Program

VAR / END_VAR?3

VAR_TEMP / END_VAR

! The initialization of the variable depends on initialization of the declared instance. See Initialization of instances of

function blocks (FBs) (Page 205).

2 The reference (pointer) for the transferred variable is temporary.

3 The initialization of the variables depends on the memory area in which they are stored. See Initialization of static

program variables (Page 204).

Note

Please note that downloading the ST source file to the target system and running tasks
affect variable initialization and thus the contents of the variables, see Time of the variable
initialization (Page 200).

190

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

Table 5-17

IMPLEMENTATION
FUNCTION testFkt

VAR

END_

// Declaration
flag : BOOL;
VAR

END FUNCTION
FUNCTION BLOCK testFbst;

VAR // Declaration
rotationl : INT;
END VAR
VAR TEMP // Declaration
helpl, help2 REAL;
END VAR
END_FUNCTION BLOCK
PROGRAM testPrg;
VAR // Declaration
rotation2 . INT;
END VAR
VAR TEMP // Declaration
helpl, help2 REAL;
END_ VAR

END_ PROGRAM
END IMPLEMENTATION

5215 Static variables

Examples of static and temporary variables

of

of

of

of

of

5.2 Variables in SIMOTION

temporary variables

static variables

temporary variables

static variables

temporary variables

Static variables retain their most recent value when the source file section is exited. This
value is used again at the next call.

The following source file sections contain static variables:

® Programs

® Function blocks

Static variables are declared in a static variable block.

VAR

Static variable block (unformatted)

Variable declaration

2 Symbolic Pl access

Instance
declaration

{ END_VAR)—»

Figure 5-3

SIMOTION ST Structured Text

Syntax: Static variable block

Programming and Operating Manual, 08/2008

191

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

You can do the following in the static variable block, according to the syntax in the figure:
® Declare variables (name and data type), optionally with initialization.

e Declare symbolic accesses to the process image of the BackgroundTask.

e Declare instances of the function blocks.

For initialization of the static variables:

® In programs: Depending on the execution behavior to which the program is assigned (see
SIMOTION Basic Functions Function Manual).

See also Initialization of static program variables (Page 204).
® In function blocks: Depending on the initialization of the declared instance.

See also Initialization of instances of function blocks (FBs) (Page 205).

5.21.6 Temporary variables

Temporary variables are initialized each time the source file section is called. Their value is
retained only during execution of the source file section.

The following source file sections contain temporary variables:
® Programs

® Function blocks

® Functions

® EXxpression

In functions and expressions, you declare temporary variables in the FB temporary variable
block (see following figure):

Temporary variable block in FB and program (unformatted)

-+ VARTEMP) Variable declaration (END_VAR)—

Figure 5-4 Syntax: Temporary variable block in the FB or program

SIMOTION ST Structured Text
192 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

In functions and expressions, you declare temporary variables in the FC temporary variable
block (see following figure):

Temporary variable block in FC (unformatted)

VAR . Variable declaration END_VAR

Figure 5-5 Syntax: Temporary variable block in an FC

5.2.2 Use of global device variables

Global device variables are user-defined variables that you can access from all program
sources (e.g. ST source files, MCC units) of a SIMOTION device.

Global device variables are created in the symbol browser tab of the detail view; to do this,
you must be working in offline mode.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the GLOBAL DEVICE VARIABLES
element in the SIMOTION device subtree.

2. In the detail view, select the Symbol browser tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:

— Name of variable

— Data type of variable (only elementary data types are permitted)
4. Optionally, you can make the following entries:

Selection of Retain checkbox (This declares the variable as retentive, so that its value
will be retained after a power failure.)

Array length (array size)

Initial value (if array, for each element)

Display format (if array, for each element)

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

In ST source files, you can use a global device variable, just like any other variable.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 193

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Note

If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the global device variable with _device.var-name.

An alternative to global device variables is the declaration of unit variables in a separate unit,
which is imported into other units. This has the following advantages:

1. Variable structures can be used.

2. The initialization of the variables during the STOP-RUN ftransition is possible (via
Program in StartupTask).

3. For newly created global unit variables, a download in RUN is also possible.

Please refer to the SIMOTION Basic Functions Function Manual.

5.2.3 Memory ranges of the variable types
The different variable types are stored in different memory areas, which are initialized at
different times. The table shows:
® The available memory areas for variable types that are declared in ST source files

(possibly dependent on the version of the SIMOTION Kernel).

® The initialization time for each memory area.
An explanation using an example is contained in the Example for memory areas, valid as of
Kernel V3.1 (Page 196) section.

Table 5-18 Memory ranges assigned to different variable types and their initialization

Memory area Assigned variable types Initialization?

Retentive memory

Retentive unit variables

During download using the download
settings

User memory of unit

¢ Non-retentive unit variables

e Function block instances declared with
VAR_GLOBAL, including the associated
static variables (VAR, VAR_INPUT,
VAR_OUTPUT)

Also for the activated "Create program instance

data only once" compiler option (Page 44):

e Local variables of the unit programs
declared with VAR

e Function block instances declared with
VAR_GLOBAL, including the associated
static variables (VAR, VAR_INPUT,
VAR_OUTPUT)

o When the device is switched on

e During download using the download
settings

e As of Version V4.1 of the SIMOTION
Kernel:

For transition to the RUN mode when
the associated declaration block
specifies the following pragma:

{ Blocklnit_OnDeviceRun :=
ALWAYS; }

See also Controlling compiler with
attributes (Page 247)

194

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Memory area

Assigned variable types

Initialization*

User memory of task

For the deactivated "Create program instance
data only once" compiler option (Page 44)
(default):

Local variables declared with VAR of the
assigned programs

Function block instances declared with VAR
within the assigned programs, including the
associated static variables (VAR,
VAR_INPUT, VAR_OUTPUT)

According to execution behavior of task:
e Sequential tasks:

Each time task is started
e Cyclic tasks:

For CPU transition to the RUN mode

Local data stack of the task
(as of Version V3.1 of the
SIMOTION kernel)2

Reference (pointer) to the program called in
the task

Local variables declared with VAR_TEMP of
the program called in the task

On each call of the program in the task

Reference (pointer) to called function block
instances

Local variables of function blocks declared
with VAR_TEMP

In/out parameters of function blocks
declared with VAR_IN_OUT

Each time the function block instance is
called

Variables of called functions declared with
VAR, VAR_INPUT or VAR_IN_OUT!

Return value of called functions

Each time the function is called

Local data stack of the task
(up to Version V3.0 of the
SIMOTION kernel)3

Copied data of the program called in the
task, including all associated variables
(VAR, VAR_TEMP)

On each call of the program in the task

Copied data from instances of called
function blocks, including all associated
variables (VAR, VAR_INPUT,
VAR_OUTPUT, VAR_IN_OUT",
VAR_TEMP)

Each time the function block instance is
called

Variables of called functions declared with
VAR, VAR_INPUT or VAR_IN_OUT!

Return value of called functions

Each time the function is called

1 References (pointers) to the transferred variables.

2 Also for the use of libraries that have been compiled with reference to the SIMOTION device and the associated version
of the SIMOTION kernel (as of Version V3.1). See also Memory requirement of the variables on the local data stack (as of

Kernel V3.1).

3 Also for the use of libraries that have been compiled device-dependent (i.e. without reference to a SIMOTION device and
a SIMOTION Kernel version). See also Memory requirement of the variables on the local data stack (up to Kernel V3.0).

4 For a detailed description of the initialization behavior of the individual variable types, see Time of the variable

initialization (Page 200).

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

195

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5.2.3.1 Example of memory areas, valid as of Kernel V3.1

Table 5-19 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 1)

INTERFACE
// The statements in the interface section specify,
// what source content is exported.

FUNCTION FC1;

FUNCTION BLOCK FB1;

PROGRAM pl;

// Unit variables of the interface section are also visible
// on HMI devices.
VAR GLOBAL // Non-retentive unit variables
// are present in the UNIT user memory
ul if : INT;

END_ VAR
VAR GLOBAL CONSTANT // Unit constants are located

// in the unit user memory
END VAR
VAR GLOBAL RETAIN // Retentive unit variables are located

// in the retentive (power-fail-safe) memory
END_ VAR

END_ INTERFACE

IMPLEMENTATION
// The implementation section contains the executable code sections
// in different program organization units (POU)
// A POU can be a program, FC, or FB.

// Unit variables of the implementation section can only be used

// within the source file.

VAR GLOBAL // Non-retentive unit variables are located

// in the unit user memory
ul glob : INT;

END VAR
VAR GLOBAL CONSTANT // Unit constants are located

// in the unit user memory
END VAR
VAR GLOBAL RETAIN // Retentive unit variables are located

// in the retentive (power-fail-safe) memory
END VAR

SIMOTION ST Structured Text
196 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Table 5-20 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 2)

// Continuation

[mm e
FUNCTION BLOCK FB1l // Declaration of an instance
// instance determines where its data are located:
// - as VAR GLOBAL in a unit:
// in the unit user memory
// - as VAR in a program:
// in the user memory of the task (default)
// - As VAR in a function block:
// in the user memory of the unit or task,
// depending on the instance declaration of the higher-level FB
// When the instance is called, a pointer to the instance data
// is placed on the stack of the calling task
VAR INPUT // Input parameters
// are in the user memory
// are written when the instance is called
fb in : INT;
END_ VAR
VAR OUTPUT // Output parameters
// are in the user memory
fb out : INT;
END_VAR
VAR IN OUT // In/out parameter
// references are in the user memory
// are written when the instance is called
fb in out : INT;
END VAR
VAR // Static variables
// are in the user memory
// can be used locally in the FB
fb varl : INT;
END_ VAR
VAR _TEMP // Temporary variables
// are on the stack of the calling task
// are initialized on each call
fb templ : INT;
END_VAR
// Code is in the user memory of the unit
fb_varl := fb varl + 1;
fb out := fb varl;
fb templ := fb in out;
fb in out := fb templ + fb in;
END_FUNCTION BLOCK
[m e o

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

197

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Table 5-21 Example of memory ranges of the variable types, as of Kernel V3.1 (Part 3)

// Continuation

FUNCTION FC1 : INT // The function data is on the
// stack of the calling task; they are initialized each time
// the function is called.
// The return value is on the stack of the calling task

VAR INPUT // Input parameters
// are on the stack of the calling task
// are written when the function is called

fc in : INT;
END VAR
VAR // Temporary variables
// are on the stack of the calling task
fc var : INT;
END VAR
// Code is in the user memory of the unit
fc var := 567;
fcl := fc in + fc var;

END FUNCTION

PROGRAM pl
VAR // By default, variables are located in the
// in the user memory of the task
p_var : INT;
p _varFB : FB1;
END VAR
VAR TEMP // Temporary variables
// are on the stack of the task,
// are initialized on each task pass
p_temp : INT;
END_ VAR

// Code is in the user memory of the unit

p_temp := p var;
p varFB (fb in out := p temp);
ul glob := 4711;

END PROGRAM
END_ IMPLEMENTATION

SIMOTION ST Structured Text
198 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

5232 Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)

The variables stored on the local data stack of a task are listed in Memory ranges of the
variable types (Page 194). You set the stack size for each task in the task configuration.

Note the following for memory requirements in the local stack:
® Temporary local variables require their own size on the stack.
® (lobal variables and static local variables do not require any resources on the stack.

If you are using them as input parameters for a function, however, they require their own
data size on the stack.

e Even if a function is called more than once in a task, it only uses the stack's resources
once.

® Variables of type BOOL require one byte on the stack.

Note

The above details are also true for the use of libraries that have been compiled with
reference to the SIMOTION device and the associated version of the SIMOTION kernel (as
of Version V3.1).

NOTICE

If the library is not device-dependent (i.e. compiled without reference to a SIMOTION
device or SIMOTION Kernel version): These libraries are compiled compatible to the
permitted versions of the SIMOTION kernel.

Consequently, the variables of program organization units (POU) called from these libraries
occupy the local data stack as for versions of the SIMOTION kernel up to V3.0. See
Memory requirement of the variables on the local data stack (up to Kernel

V3.0) (Page 199).

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 239) function.

5.2.3.3 Memory requirement of variables on local data stack (Kernel V3.0 and below)

The variables stored on the local data stack of a task are listed in Memory ranges of the
variable types (Page 194). You set the stack size for each task in the task configuration.

Note the following for memory requirements in the local stack:
® Static local variables in programs require double their size on the stack.

e Static local variables in FBs require several times their size on the stack, depending on
the calling depth.

® Temporary local variables (in programs, FBs, and FCs) require their own size on the
stack.

® (lobal variables do not occupy any stack memory space.

If you are using them as input parameters for a function or function block, however, they
will occupy their usual space on the stack.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 199

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

e Even if a function is called more than once in a task, it only uses the stack's resources
once.

e Variables of type BOOL require one byte on the stack.

NOTICE

When a function block instance is called, all instance data is copied to the local data stack,
even if the instance is declared as a VAR_GLOBAL instance.

If the library is not device-dependent (i.e. compiled without reference to a SIMOTION
device or SIMOTION Kernel version): These libraries are compiled compatible to the
permitted versions of the SIMOTION kernel. Consequently, the variables of program
organization units (POU) called from these libraries occupy the local data stack as
described in this section.

The memory requirement on the local data stack is significantly larger than for versions of
the SIMOTION kernel as of V3.1, see Memory requirement of the variables on the local
data stack (as of Kernel V3.1) (Page 199). Take this into consideration for setting the stack
size for the task configuration!

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 239) function.

5.2.4 Time of the variable initialization
The timing of the variable initialization is determined by:
® Memory area to which the variable is assigned
e Operator actions (e.g. source file download to the target system)
® Execution behavior of the task (sequential, cyclic) to which the program was assigned.

All variable types and the timing of their variable initialization are shown in the following
tables. You will find basic information about tasks in the SIMOT/ON Basic Functions
Function Manual.

The behavior for variable initialization during download can be set: To do this, as a default
setting select the Options > Settings menu and the Download tab or define the setting during
the current download.

SIMOTION ST Structured Text
200 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Note

You can upload values of unit variables or global device variables from the SIMOTION
device into SIMOTION SCOUT and save them in XML format.

1. Save the required data segments of the unit variables or global device variables as a data
set with the function _saveUnitDataSet.

2. Use the Save variables function in SIMOTION SCOUT.

You can use the Restore variables function to download these data sets and variables back
to the SIMOTION device.

For more information, refer to the SIMOTION SCOUT Configuration Manual.

This makes it possible, for example, to obtain this data, even if it is initialized by a project
download or if it becomes unusable (e.g. due to a version change of SIMOTION SCOUT).

5.241 Initialization of retentive global variables

Retentive variables retain their last value after a loss of power. All other data is reinitialized
when the device is switched on again.

Retentive global variables are initialized:

e \When the backup or buffer for retentive data fails.

® When the firmware is updated.

® \When a memory reset (MRES) is performed.

e With the restart function (Del. SRAM) in SIMOTION P350.

e By applying the _resetUnitData function (as of kernel V3.2), possible selectively for
different data segments of the retentive data.

® \When a download is performed according to the following description.

Table 5-22 Initializing retentive global variables during download

Variable type

Time of the variable initialization

Retentive global
device variables

The behavior when downloading depends on the /nitialization of all retentive global device
variables and program data setting':

e Yes?Z All retentive global device variables are initialized.
e No3:
— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for retentive global device variables. If the version ID is changed, the
retentive global device variables are initialized.

— Up to Version V3.1 of the SIMOTION kernel:

Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.

See: Version ID of global variables and their initialization during download (Page 207).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 201

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Variable type Time of the variable initialization
Retentive unit The behavior when downloading depends on the /nitialization of all refentive global device
variables variables and program data setting":

e Yes2: All retentive unit variables (all units) are initialized.

e Nod

— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)* of the retentive
unit variables in the interface or implementation section. If the version identification is
changed, only the associated data block will be initialized®.

— Up to Version V3.1 of the SIMOTION kernel:

Common version ID for all unit variables (retentive and non-retentive, in the interface and
implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 207).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.

4 Several data blocks for retentive unit variables in the interface or implementation section can be declared only in the
SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for retentive unit variables will be created in the interface or implementation section.

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):
{ BlocklInit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

5242 Initialization of non-retentive global variables
Non-retentive global variables lose their value during power outages. They are initialized:

e For the Initialization of retentive global variables (Page 201), e.g. during a firmware
update or general reset (MRES).

® During power up.

® By applying the _resetUnitData function (as of kernel V3.2), possible selectively for
different data segments of the non-retentive data.

® During the download in accordance with the description on the following table.
® Only as of Version V4.1 of the SIMOTION Kernel and for non-retentive unit variables:

For transition to the RUN mode when the associated declaration block within a pragma
specifies the following attribute (only for SIMOTION ST programming language): {
BlocklInit_OnDeviceRun := ALWAYS; }

SIMOTION ST Structured Text
202 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

Table 5-23 Initializing non-retentive global variables during download

Variable type Time of the variable initialization
Non-retentive global The behavior when downloading depends on the /nitialization of all non-retentive global device
device variables variables and program data setting':

e Yes?2: All non-retentive global device variables are initialized.

e No3:

— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for non-retentive global device variables. If the version ID is changed,
the non-retentive global device variables are initialized.

— Up to Version V3.1 of the SIMOTION kernel:

Joint version ID for all global device variables (retentive and non-retentive). If the version
ID is changed, all global device variables are initialized.

See: Version ID of global variables and their initialization during download (Page 207).

Non-retentive unit The behavior when downloading depends on the /nitialization of all non-retentive global device
variables variables and program data setting':
e Yes?2 All non-retentive unit variables (all units) are initialized.
e No3:
— As of version V3.2 of the SIMOTION Kernel:

Separate version ID for each individual data block (= declaration block)* of the non-
retentive unit variables in the interface or implementation section. If the version
identification is changed, only the associated data block will be initialized®.

— Up to Version V3.1 of the SIMOTION kernel:

Common version ID for all unit variables (retentive and non-retentive, in the interface and
implementation section) of a unit. If the version ID is changed, all unit variables of this unit
are initialized.

See: Version ID of global variables and their initialization during download (Page 207).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.
4 Several data blocks for non-retentive unit variables in the interface or implementation section can be declared only in the

SIMOTION ST programming language. For the SIMOTION MCC and SIMOTION LAD/FBD programming languages, only
one data block for non-retentive unit variables will be created in the interface or implementation section.

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following attribute has
been specified in the associated declaration block within a pragma (only for the SIMOTION ST programming language):
{ BlocklInit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 203

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5243 Initialization of local variables

Local variables are initialized:
® For the initialization of retentive unit variables (Page 201).
e For the initialization of non-retentive unit variables (Page 202).

® Also, according to the following description:

Table 5-24 Initialization of local variables

Variable type

Time of the variable initialization

Local program
variables

Local variables of programs are initialized differently:

e Static variables (VAR) are initialized according to the memory area in which they are stored.
See: Initialization of static program variables (Page 204).

e Temporary variables (VAR_TEMP) are initialized every time the program of the task is called.

Local variables of
function blocks (FB)

Local variables of function blocks are initialized differently:

e Static variables (VAR, VAR_IN, VAR_OUT) are only initialized when the FB instance is
initialized.
See: Initialization of instances of function blocks (FBs) (Page 205).

e Temporary variables (VAR_TEMP) are initialized every time the FB instance is called.

Local variables of
functions (FC)

Local variables of functions are temporary and are initialized every time the function is called.

Note

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 239) function.

5244 Initialization of static program variables

204

The following versions affect the following static variables:
® | ocal variables of a unit program declared with VAR

® Function block instances declared with VAR within a unit program, including the
associated static variables (VAR, VAR_INPUT, VAR_OUTPUT).

The initialization behavior is determined by the memory area in which the static variables are
stored. This is determined by the "Create program instance data only once" (Page 44)
compiler option.

e For the deactivated "Create program instance data only once" compiler option (default):

The static variables are stored in the user memory of each task, which is assigned to the
program.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

The initialization of the variables thus depends on the execution behavior of the task to
which the program is assigned (see SIMOTION Basic Functions Function Manual):

— Sequential tasks (MotionTasks, UserinterruptTasks, SysteminterruptTasks,
StartupTask, ShutdownTask): The static variables are initialized every time the task is
started.

— Cyclic tasks (BackgroundTask, SynchronousTasks, TimerInterruptTasks): The static
variables are initialized only during transition to RUN mode.

® For the activated "Create program instance data only once" compiler option:
This setting is necessary, for example, if a program is to be called within a program.
The static variables are stored only once in the user memory of the task.

— They are thus initialized together with the non-retentive unit variables, see Initialization
of non-retentive global variables (Page 202).

— Only as of Version V4.1 of the SIMOTION Kernel:

In addition, they can be initialized during transition to RUN mode. To do this, the
following attribute must be specified in the associated declaration block within a
pragma (only SIMOTION ST programming language):

{ Blocklnit_OnDeviceRun := ALWAYS; }.

5.2.4.5 Initialization of instances of function blocks (FBs)

The initialization of a function block instance (Page 157) is determined by the location of its
declaration:

® Global declaration (within VAR_GLOBAL/END_VAR in the interface of implementation
section):

Initialization as for a non-retentive unit variable, see Initialization of non-retentive global
variables (Page 202).

® | ocal declaration in a program (within VAR / END_VAR):

Initialization as for static variables of programs, see Initialization of static variables of
programs (Page 204).

® | ocal declaration in a function block (within VAR / END_VAR):
Initialization as for an instance of this function block.

® Declaration as in/fout parameter in a function block or a function (within
VAR_IN_OUT / END_VAR):

For the initialization of the POU, only the reference (pointer) will be initialized with the
instance of the function block remaining unchanged.

Note

You can obtain information about the memory requirements of a POU in the local data
stack using the Program Structure (Page 239) function.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 205

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5246 Initialization of system variables of technology objects

The system variables of a technology object are usually not retentive. Depending on the
technology object, a few system variables are stored in the retentive memory area (e.g.
absolute encoder calibration).

The initialization behavior (except in the case of download) is the same as for retentive and
non-retentive global variables. See Initialization of retentive global variables (Page 201) and
Initialization of non-retentive global variables (Page 202).

The behavior during the download is shown below for:

e Non-retentive system variables

® Retentive system variables

Table 5-25 Initializing technology object system variables during download

Variable type

Time of the variable initialization

Non-retentive system
variables

Behavior during download, depending on the /nitialization of all non-refentive data for technology
objects setting’:
e Yes2: All technology objects are initialized.
— All technology objects are restructured and all non-retentive system variables are
initialized.
— All technological alarms are cleared.
¢ No3: Only technology objects changed in SIMOTION SCOUT are initialized.

— The technology objects in question are restructured and all non-retentive system variables
are initialized.

— All alarms that are pending on the relevant technology objects are cleared.

— If an alarm that can only be acknowledged with Power Onis pending on a technology
object that will not be initialized, the download is aborted.

Retentive system
variables

Only if a technology object was changed in SIMOTION SCOUT, will its retentive system variables
be initialized.

The retentive system variables of all other technology objects are retained (e.g. absolute encoder
calibration).

1 Default setting in the Options > Settings menu, Download tab,
or the current setting for the download.

2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.

206

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

5.24.7 Version ID of global variables and their initialization during download

Table 5-26 Version ID of global variables and their initialization during download

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the

SIMOTION kernel

Global device variables

Retentive global o

device variables

Non-retentive
global device
variables

Separate version ID for each data segment of the global | e

device variables.

The version identification of the data segment changes
for:

— Add or remove a variable within the data segment

— Change of the identifier or the data type of a variable
within the data segment

This version ID does not change on:
— Changes in the other data segment
— Changes to initialization values’

During downloading?, the rule is: Initialization of a data
segment only if its version ID has changed.

Use of the functions for data backup and initialization
possible.

Common version ID for all data
segments of the global device
variables.

This version ID changes when
the variable declaration is
changed in a data segment.

During downloading?, the rule
is: Initialization of all data
segments if the version ID
changes.

Use of the functions for data
backup not possible.

Unit variables of a unit

Retentive unit
variables in the
interface section

Retentive unit
variables in the
implementation
section

Non-retentive unit
variables in the
interface section

Non-retentive unit
variables in the
implementation
section

Several data blocks (= declaration blocks)? in each data
segment possible.

Own version ID for each data block.
The version identification of the data block changes for:

— Add or remove a variable in the associated
declaration block

— Change of the identifier or the data type of a variable
in the associated declaration block

— Change of a data type definition (from a separate or
imported* unit) used in the associated declaration
block

— Add or remove declaration blocks within the same
data segment before the associated declaration block

This version ID does not change on:

— Add or remove declaration blocks in other data
segments

— Add or remove declaration blocks within the same
data segment after the associated declaration block

— Changes in other data blocks
- Changes to initialization values?

— Changes to data type definitions that are not used in
the associated data block

— Changes to functions

During downloading?, the rule is: Initialization of a data
block only if its version ID has changed.®

Functions for data backup and initialization take into
account the version ID of the data blocks.

One data block in each data
segment (also for several
declaration blocks)3

Common version ID for all
global declarations in a unit.

This version ID changes in
response to the following
changes:

— Variable declaration in a
data segment

— Declaration of global data
types in the unit

— Declaration in the interface
section of an imported* unit.

During downloading?, the rule
is: Initialization of all data
segments if the version ID
changes.

Use of the functions for data
backup only possible for: Non-
retentive unit variables in the
interface section

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

207

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Data segment As of Version V3.2 of the SIMOTION kernel Up to Version V3.1 of the
SIMOTION kernel

1 Changed initialization values are not effective until the data block or data segment in question is initialized.

21f Initialization of all retentive global device variables and program data= No and /nitialization of all non-retentive global
device variables and program data = No.

In the case of other settings: See the sections "Initialization of retentive global variables (Page 201)" and "Initialization of
non-retentive global variables (Page 202)".

3 Several declaration blocks per data segment are possible only in the SIMOTION ST programming language. For the
SIMOTION MCC and SIMOTION LAD/FBD programming languages, only one declaration block per data segment will be
created.

4 The import of units depends on the programming language, refer to the associated section (Page 181).

5 Also for the download in RUN, provided the associated prerequisites have been satisfied and the following
attribute (Page 247) has been specified in the associated declaration block within a pragma (Page 242) (only for the
SIMOTION ST programming language): { Blocklnit_OnChange := TRUE; }.

For the download in RUN, see the SIMOTION Basic Functions Function Manual.

5.2.5 Variables and HMI devices
The following variables are exported to HMI devices where they are available:
e System variables of the SIMOTION device
e System variables of technology objects

e |/O variables

Global device variables
e Retentive and non-retentive unit variables of the interface section (default setting).

This default setting can be changed for each declaration block using the following
pragma:

{ HMI Export := FALSE; }

The unit variables of such an identified declaration block are not exported to HMI devices.
The HMI consistency check is also omitted for them during the download.

See also Controlling compiler with attributes (Page 247).
The following variables are not exported to HMI devices and are not available there:
e Retentive and non-retentive unit variables of the implementation section (default setting).

This default setting can be changed for each declaration block using the following
pragma:

{ HMI Export := TRUE; }

The unit variables of such an identified declaration block are exported to HMI devices.
Consequently, they are subject to the HMI consistency check during the download.

See also Controlling compiler with attributes (Page 247).

® [ocal variables of a POU

SIMOTION ST Structured Text
208 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.2 Variables in SIMOTION

NOTICE

The total size of the unit variables that can be exported to HMI devices is limited to 64 KB
per unit.

The effect of the pragma { HMI Export := FALSE; } and
{ HMI Export := TRUE; } depends on the version of the SIMOTION Kernel:
e As of Version V4.1 of the SIMOTION Kernel:

The pragma affects the export of the corresponding declaration block to HMI devices
and the structure of the HMI address space:

— Only those variables in declaration blocks exported to HMI devices occupy the HMI
address space.

— Within the HMI address space, the variables are arranged according to order of their
declaration.

e Up to version V3.2 or V4.0 of the SIMOTION kernel:

The pragma affects only the export of the corresponding declaration block to HMI
devices.

The HMI address space is also occupied by unit variables of the interface section whose
declaration blocks are not assigned to HMI devices.

Within the HMI address space, the variables are sorted in the following order:

— Retentive unit variables of the interface section (exported and not exported).

— Retentive unit variables of the implementation section (only exported).

— Non-retentive unit variables of the interface section (exported and not exported).
— Non-retentive unit variables of the implementation section (only exported).

Within these segments, the variables are arranged according to order of their
declaration.

e Up to Version V3.1 of the SIMOTION kernel:
The pragma has no effect.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 209

Integration of ST in SIMOTION

5.2 Variables in SIMOTION

Table 5-27 Example for the control of the HMI export with the corresponding pragma

INTERFACE
VAR GLOBAL
// HMI export
x1 : DINT;
END VAR
VAR GLOBAL
{ HMI Export := FALSE; }
// No HMI export
x2 : DINT;
END VAR
//
END INTERFACE

IMPLEMENTATION
VAR GLOBAL
// No HMI export
yl : DINT;
END VAR
VAR GLOBAL
{ HMI Export := TRUE; }
// HMI export
y2 : DINT;
END VAR
//
END_IMPLEMENTATION

SIMOTION ST Structured Text
210 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.1 Overview of access to inputs and outputs

SIMOTION provides several possibilities to access the device inputs and outputs of the
SIMOTION device as well as the central and distributed 1/O:

® Via direct access with 1/O variables
Direct access is used to directly access the corresponding 1/O address.

Define an I/O variable (name and I/O address) without assigning a task to it. The entire
address space of the SIMOTION device can be used.

It is preferable to use direct access with sequential programming (in MotionTasks);
access to current input and output values at a particular point in time is especially
important in this case.

Further information: Direct access and process image of the cyclic tasks (Page 214).
® Via the process image of cyclic tasks using I/O variables

The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each 1/O address is assigned to a cyclic task and is updated using this
task. The task remains consistent throughout the whole cycle. This process image is
used preferentially when programming the assigned task (cyclic programming).

Define an I/O variable (name and I/O address) and assign a task to it. The entire address
area of the SIMOTION device can be used.

Direct access to this 1/O variable is still possible: Specify direct access with _ direct.var-
name.

Further information: Direct access and process image of the cyclic tasks (Page 214).
® Using the fixed process image of the BackgroundTask

The process image of the BackgroundTask is a memory area in the RAM of the
SIMOTION device, on which a subset of the I/O address space of the SIMOTION device
is mirrored. The mirror image is refreshed with the BackgroundTask and is consistent
throughout the entire cycle. This process image is used preferentially when programming
the BackgroundTask (cyclic programming).

The address space 0 .. 63 can be used. I/0O addresses that are accessed using the
process image of the cyclic task are excluded.

Further information: Access to the fixed process image of the
BackgroundTask (Page 220).

A comparison of the most important properties is contained in "Important properties of direct
access and process image (Page 212)".

You can use I/O variables like any other variable, see "Access I/O variables (Page 226)".

Note
An access via the process image is more efficient than direct access.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 211

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.2

Table 5-28

Important features of direct access and process image access

Important features of direct access and process image access

Direct access

Access to process image of
cyclic tasks

Access to fixed process image
of the BackgroundTask

Permissible address
range

Entire address range of the SIMOTION device

Exception: I/O variables comprising more than one byte must not
contain addresses 63 and 64 contiguously (example: PIW63 or

PQD62 are not permitted).

The addresses used must be present in the I/O and appropriately

configured.

0..63,

except for the addresses used
in the process image of the
cyclic tasks

Addresses that are not present

in the 1/0 or have not been
configured can also be used.

Assigned task

None.

Cyclic task for selection:
e SynchronousTasks,
e TimerlnterruptTasks,
e BackgroundTask.

BackgroundTask.

Updating

e Onboard I/O of SIMOTION
devices C230-2, C240, and
P350:

Update occurs in a cycle
clock of 125 ps.

e 1/0O via PROFIBUS DP,
PROFINET, P-Bus, and
DRIVE-CLIQ as well as
Onboard 1/O of the D4xx
SIMOTION devices:

Update occurs in the

position control cycle clock.
Inputs are read at the start of
the cycle clock.

Outputs are written at the end
of the cycle clock.

Update occurs with the
assigned task:

e Inputs are read before the
assigned task is started and
transferred to the process
input image.

e Process output image is
written to the outputs after
the assigned task has been
completed.

An update is made with the
BackgroundTask.

e Inputs are read before the
BackgroundTask is started
and is transferred to the
process input image.

e Process output image is
written to the outputs when
the BackgroundTask is
complete.

Consistency

During the entire cycle of the
assigned task.

Exception: Direct access to
output occurs.

Consistency is only ensured for elementary data types.

When using arrays, the user is responsible for ensuring data

consistency.

During the entire cycle of the
BackgroundTask.

Exception: Direct access to
output occurs.

Use

Preferred in MotionTasks

Preferred in the assigned task

Preferred in the
BackgroundTask

Use the absolute
address

Not supported.

Possible, with the following
syntax: e.g. %IW62, %Q63.3.

Declaration as

Necessary, for the entire device as an |/O variable in the symbol

Possible, but not necessary:

variable browser. e for the entire device as an
Syntax of I/O address: e.g. PIW1022, PQ63.3. I/O variable in the symbol
browser,
e As unit variable,
e Aslocal variable in a
program.
SIMOTION ST Structured Text
212 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

Direct access

Access to process image of

Access to fixed process image

cyclic tasks of the BackgroundTask
Write protection for Possible; Read only status can | Not supported. Not supported.
outputs be selected.
Declaration of arrays | Possible. Not supported.

Further information

Direct access and process image of the cyclic tasks (Page 214).

Access to the fixed process
image of the
BackgroundTask (Page 220).

Responses in the
event of an error

Error during access from user
program, alternative reactions
available:

e CPU stop!
e Substitution value
e Lastvalue

Error during generation of
process image, alternative
reactions available:

e CPU stop?
e Substitution value
e Last value

Error during generation of
process image, reaction: CPU
stop2.

Exception: If a direct access
has been created at the same
address, the behavior set there
applies.

Please refer to the SIMOTION Basic Functions function description.

Access

¢ In RUN mode Without any restrictions. Without any restrictions. Without any restrictions.

e During Possible with restrictions: Possible with restrictions: Possible with restrictions:
StartupTask e Inputs can be read. o Inputs are read at the start | e Inputs are read at the start

e Outputs are not written until of the StartupTask. of the StartupTask.
StartupTask is complete. e Outputs are not written until | e Outputs are not written until
StartupTask is complete. StartupTask is complete.

e During Without any restrictions. Possible with restrictions: Possible with restrictions:

ShutdownTask

¢ Inputs retain status of last
update

e Outputs are no longer
written.

¢ Inputs retain status of last
update

e Outputs are no longer
written.

1 Call the ExecutionFaultTask.
2 Call the PeripheralFaultTask.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

213

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.3 Direct access and process image of cyclic tasks

Properties

Direct access

Direct access to inputs and outputs and access to the process image of the cyclic task
always take place via I/O variables. The entire address range of the SIMOTION device (see
table below) can be used.

A comparison of the most important properties, also in comparison to the fixed process
image of the BackgroundTask (Page 220) is contained in "Important properties of direct
access and process image (Page 212)".

The direct access is used to directly access the corresponding I/O address. Direct access is
used primarily for sequential programming (in MotionTasks). The access to the current value
of the inputs and outputs at a specific time is particularly important.

For direct access, you define an I/O variable (Page 217) without assigning it a task.

Note
An access via the process image is more efficient than direct access.

Process image of the cyclic task

214

The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each I/0O address is assigned to a cyclic task and is updated using this task.
The task remains consistent throughout the whole cycle. This process image is used
preferentially when programming the assigned task (cyclic programming). The consistency
during the complete cycle of the task is particularly important.

For the process image of the cyclical task you define an 1/O variable (Page 217) and assign
it a task.

Direct access to this 1/O variable is still possible: Specify direct access with _ direct.var-name.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

Address range of the SIMOTION devices

5.3 Access to inputs and outputs (process image, I/O variables)

The address range of the SIMOTION devices depending on the version of the

SIMOTION kernel is contained in the following table. The complete address range can be

used for direct access and process image of the cyclical tasks.

Table 5-29
SIMOTION kernel

Address range of the SIMOTION devices depending on the version of the

SIMOTION device Address range for SIMOTION Kernel version
V3.0 V3.1,V3.2 As of V4.0
C230-2 0..1023 0..20473 0..20473
C240 - - 0..4096°3
D410 - - 0..1638334
D4252 - 0..40953 0..1638334
D435 0..1023 0..40953 0..1638334
D4452 - 0..40953 0..1638334
P350 0..1023 0..20473 0..40953

1 Available as of V4.1.
2 Available as of V3.2.

PROFIBUS DP line.

PROFINET segment.

34 For distributed I/O (over PROFIBUS DP), the transmission volume is restricted to 1024 bytes per

5 For distributed I/O (over PROFINET), the transmission volume is restricted to 4096 bytes per

Note

Observe the rules for 1/0 addresses for direct access and the process image of the cyclical

tasks (Page 216).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

215

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.3.1 Rules for I/0 addresses for direct access and the process image of the cyclical tasks

NOTICE

2.

3.

4.

You must observe the following rules for the 1/O variable addresses for direct access and
the process image of the cyclic task (Page 214). Compliance with the rules is checked
during the consistency check of the SIMOTION project (e.g. during the download).

1.

Addresses used for I/O variables must be present in the I/O and configured
appropriately in the HW Config.

I/O variables comprising more than one byte must not contain addresses 63 and 64
contiguously.

The following I/O addresses are not permitted:

— Inputs: PIW63, PID61, PID62, PID63

— Outputs: PQW63, PQD61, PQD62, PQD63

All addresses of an I/O variable comprising more than one byte must be within an
address area configured in HW-config.

An I/O address (input or output) can only be used by a single I/O variable of data type
BYTE, WORD or DWORD or an array of these data types. Access to individual bits with
I/O variables of data type BOOL is possible.

If several processes (e.g. /O variable, technology object, PROFIdrive telegram) access
an |I/O address, the following applies:

— Only a single process can have write access to an I/O address of an output (BYTE,
WORD or DWORD data type).

Read access to an output with an I/O variable that is used by another process for
write access, is possible.

— All processes must use the same data type (BYTE, WORD, DWORD or ARRAY of
these data types) to access this I/O address. Access to individual bits is possible
irrespective of this.

Take care, for example, if you want to use an I/O variable to read the transferred
PROFIBUS telegram of a drive: The length of the I/O variables must match the
length of the telegram.

— Write access to different bits of an address is possible from several processes;
however, write access with the data types BYTE, WORD or DWORD is then not
possible.

Note

These rules do not apply to accesses to the fixed process image of the
BackgroundTask (Page 220). These accesses are not taken into account during the
consistency check of the project (e.g. during download).

216

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.3.2 Creating 1/0O variables for direct access or process image of cyclic tasks

You create I/O variables in the symbol browser of the detail view; to do this, you must be
working in offline mode.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the I/O element in the subtree of the
SIMOTION device.

2. In the detail view, select the "Symbol browser" tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:

Name of variable.

I/0 address according to the "syntax for entering 1/0 addresses (Page 219)".
Optional for outputs:

Activate the "Read only" checkbox if you only want to have read access to the output.

You can then read an output that is already being written by another process (e.g.
output of an output cam, PROFIdrive telegram).

A read-only output variable cannot be assigned to the process image of a cyclic task.

Data type of the variables in accordance with "Possible data types of the I/O
variables (Page 220)".

4. Optionally, you can also enter or select the following (not for data type BOOL):

Array length (array size).
Process image or direct access:
Can only be assigned if the "Read only" checkbox is cleared.

For process image, select the cyclic task to which you want to assign the 1/O variable.
To select a task, it must have been activated in the execution system.

For direct access, select the blank entry.

Strategy for the behavior in an error situation (see SIMOTION Basic Functions
Function Manual).

Substitute value (if array, for each element).

Display format (if array, for each element), when you monitor the variable in the
symbol browser.

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008 217

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

218

NOTICE

Note the following for the process image for cyclic tasks:
e A variable can only be assigned to one task.
e Each byte of an input or output can only be assigned to one I/O variable.

In the case of data type BOOL, please note:

e The process image for cyclic tasks and a strategy for errors cannot be defined. The
behavior defined via an I/O variable for the entire byte is applicable (default: direct
access or CPU stop).

¢ The individual bits of an I/O variable can also be accessed using the bit access
functions.

Take care when making changes within the I/O variables (e.g. inserting and deleting 1/0

variables, changing names and addresses):

¢ In some cases the internal addressing of other I/O variables may change, making all 1/0
variables inconsistent.

o |If this happens, all program sources that contain accesses to I/O variables must be

recompiled.

Note

I/0O variables can only be created in offline mode. You create the I/O variables in SIMOTION
SCOUT and then use them in your program sources (e.g. ST sources, MCC sources,
LAD/FBD sources).

Outputs can be read and written to, but inputs can only be read.

Before you can monitor and modify new or updated 1/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 226)".

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.3.3 Syntax for entering 1/0 addresses
For the input of the 1/0 address for the definition of an 1/O variable for direct access or
process image of cyclical tasks (Page 214), use the following syntax. This specifies not only
the address, but also the data type of the access and the mode of access (input/output).
Table 5-30 Syntax for the input of the 1/0 addresses for direct access or process image of the cyclic tasks
Data type Syntax for Permissible address range
Input Output Direct access Process image e.g. direct access
D435 V4.1
BOOL PIn.x PQn.x n: | 0. MaxAdadr -1 n: |0..16383
x: 0.7 X: 0.7
BYTE PIBn PQBn n: |0.. MaxAdadr n: | 0.. MaxAdadr n: 0..16383
WORD PIWn PQWn n: |0..62 n: |0.62 n: 0..62
64 .. MaxAdadr-1 64 .. MaxAddr-1 64 .. 16382
DWORD PIDn PQDn n: |0..60 n: |0..60 n: 0..60
64 .. MaxAddr- 3 64 .. MaxAddr- 3 64 .. 16380

n = logical address
x = bit number

MaxAddr=

Maximum 1/O address of the SIMOTION device depending on the version of the SIMOTION kernel, see
address range of the SIMOTION devices in "direct access and process image of the cyclical
tasks (Page 214)".

" For data type BOOL, it is not possible to define the process image for cyclic tasks. The behavior defined via an 1/0
variable for the entire byte is applicable (default: direct access).

Examples:
Input at logic address 1022, WORD data type: PIW1022.
Output at logical address 63, bit 3, BOOL data type: PQ63.3.

Note

Observe the rules for 1/0 addresses for direct access and the process image of the cyclical
tasks (Page 216).

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008 219

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.34

5.3.4

220

Possible data types of I/O variables

The following data types can be assigned to the 1/O variables for direct access and process
image of the cyclical tasks (Page 214). The width of the data type must correspond to the
data type width of the 1/0O address.

If you assign a numeric data type to the I/O variables, you can access these variables as
integer.

Table 5-31 Possible data types of the 1/O variables for direct access and the process image of the
cyclical tasks

Data type of I/O address Possible data types for I/O variables
BOOL (PIn.x, PQn.x) BOOL

BYTE (PIBn, PQBn) BYTE, SINT, USINT

WORD (PIWn, PQWn) WORD, INT, UINT

DWORD (PIDn, PQDn) DWORD, DINT, UDINT

For details of the data type of the I/O address, see also "Syntax for entering 1/0
addresses (Page 219)".

Access to fixed process image of the BackgroundTask

The process image of the BackgroundTask is a memory area in the RAM of the SIMOTION
device, on which a subset of the 1/0 address space of the SIMOTION device is mirrored. It is
preferably used for programming the BackgroundTask (cyclic programming) as it is
consistent throughout the entire cycle.

The size of the fixed process image of the BackgroundTask for all SIMOTION devices is 64
bytes (address range O ... 63).

A comparison of the most important properties in comparison to the direct access and
process image of the cyclical tasks (Page 214) is contained in "Important properties of direct
access and process image (Page 212)".

NOTICE

I/O addresses that are accessed with the process image of the cyclic tasks must not be
used. These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

Note

The rules for /0 addresses for direct access and the process image of the cyclical

tasks (Page 216) do not apply. The accesses to the fixed process image of the
BackgroundTask are not taken into account during the consistency check of the project (e.g.
during download).

Addresses not present in the 1/0 or not configured in HW Config are treated like normal
memory addresses.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

You can access the fixed process image of the BackgroundTask by means of:

® Using an absolute Pl access (Page 221): The absolute Pl access identifier contains the
address of the input/output and the data type.

® Using a symbolic Pl access (Page 223): You declare a variable that references the
relevant absolute Pl access.

— A unit variable
— A static local variable in a program.

® Using an /O variable (Page 225): In the symbol browser, you define a valid I/O variable
for the entire device that references the corresponding absolute Pl access.

NOTICE

Please observe that if the inputs and outputs work with the Little Endian byte order (e.g. the

integrated digital inputs of the SIMOTION devices C230-2 or C240) and the following

conditions are fulfilled:

1. The inputs and outputs are configured to an address 0 .. 62.

2. An |/O variable for direct access (data type WORD, INT or UINT) has been created for
these inputs and outputs.

3. You also access these inputs and outputs via the fixed process image of the
BackgroundTask.

then the following is valid:

e Access with the data type WORD supplies the same result via the I/O variable and the
fixed process image of the BackgroundTask.

e The access to the individual bytes with the _gef/inOutByte function (see SIMOTION
Basic Functions Function Manual) supplies these in the Little Endian order.

¢ Access to the individual bytes or bits with the fixed process image of the
BackgroundTask supplies these in the Big Endian order.

For information on the order of the bytes Little Endian and Big Endian: Please refer to the
SIMOTION Basic Functions Function Manual.

5.3.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute Pl access)

You make absolute access to the fixed process image of the BackgroundTask (Page 220) by
directly using the identifier for the address (with implicit data type). The syntax of the
identifier (Page 222) is described in the following section.

You can use the identifier for the absolute Pl access in the same manner as a normal
variable (Page 222).

Note

Outputs can be read and written to, but inputs can only be read.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 221

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.34.2

Examples

222

Syntax for the identifier for an absolute process image access

For the absolute access to the fixed process image of the BackgroundTask (Page 221), use
the following syntax. This specifies not only the address, but also the data type of the access
and the mode of access (input/output).

You also use these identifiers:

® For the declaration of a symbolic access to the fixed process image of the
BackgroundTask (Page 223).

® For the creation of an I/O variables for accessing the fixed process image of the
BackgroundTask (Page 225).

Table 5-32 Syntax for the identifier for an absolute process image access

Data type Syntax for Permissible address range
Input Output

BOOL %In.x %Qn.x ..632

or or 7

%IXn.x! %QXn.x!
BYTE %IBn %QBn ..632
WORD %IWn %QWn 0..632
DWORD %IDn %QDn ..632
n = logical address
x = bit number
" The syntax %IXn.x or %QXn.x is not permitted when defining 1/O variables.
2 Except for the addresses used in the process image of the cyclic tasks.

Input at logic address 62, WORD data type: %IW62.
Output at logical address 63, bit 3, BOOL data type: %Q63.3.

NOTICE

Addresses that are accessed with the process image of the cyclic tasks must not be used.
These addresses cannot be read or written to with the fixed process image of the
BackgroundTask.

Note

The rules for I/0O addresses for direct access and the process image of the cyclical

tasks (Page 216) do not apply. The accesses to the fixed process image of the
BackgroundTask are not taken into account during the consistency check of the project (e.g.
during download).

Addresses not present in the 1/0O or not configured in HW Config are treated like normal
memory addresses.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.3 Access to inputs and outputs (process image, I/O variables)

Several examples for the assignment of variables of the same type follow:

Table 5-33 Examples of absolute CPU memory access

statusl := %$I1.1; // BOOL data type
status2 := %IB10; // BYTE data type
status3 := %$IW20; // WORD data type
status4 := %ID20; // DWORD data type
$01.1 := statusl; // BOOL data type
$0B20 := status2; // BYTE data type
$QW20 := status3; // WORD data type
$QD20 := status4; // DWORD data type

5.34.3 Symbolic access to the fixed process image of the BackgroundTask (symbolic Pl access)

You can access the fixed process image of the BackgroundTask (Page 220) symbolically
without needing to always specify the absolute process image access.

You can declare symbolic access:

® As a static variable of a program (within the VAR/END_VAR structure in the declaration
section)

® As a unit variable (within the VAR_GLOBAL / END_VAR structure in the interface or
implementation section of the ST source file)

The syntax for declaring a symbolic name for the Pl access is shown in the figure:

Symbolic Pl access (unformatted)

Integer
data type

— Absolute PI
>| Identifier I—C AT)_ access

Bit data type

Range of declared data type must
correspond to the range of the
absolute identifier.

Figure 5-6 Declaration of a symbolic access to the process image

For the absolute Pl access, see "Syntax for the identifier for an absolute PI
access (Page 222)".

The range of the declared integer or bit data type must correspond to the range of the
absolute Pl access, see "Possible data types of the symbolic Pl access (Page 224)". After
declaring a numerical data type, you can address the contents of the process image as an
integer.

See also Example for the declaration (Page 224).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 223

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5344

5.3.4.5

224

Possible data types for symbolic Pl access

In the following cases, a data type that differs from that of the absolute Pl access can be
assigned to the fixed process image of the BackgroundTask (Page 220). The data type width
must correspond to the data type width of the absolute Pl access.

® For the declaration of a symbolic Pl access (Page 223).

® For the creation of an I/O variable (Page 225).

If you assign a numeric data type to the symbolic Pl access or to the I/O variables, you can

access these variables as integer.

Table 5-34

Possible data types for symbolic Pl access

Data type of the
absolute Pl access

Possible data types of the
symbolic Pl access

BOOL (%In.x, %IXn.x, %Qn.x. %QXn.x)

BOOL

BYTE (%IBn, %QBn)

BYTE, SINT, USINT

WORD (%IWn, %QWn)

WORD, INT, UINT

DWORD (%IDn, %PQDn)

DWORD, DINT, UDINT

For the data type of the absolute Pl access, see also "Syntax for the identifier for an absolute

Pl access (Page 222)".

Example of symbolic Pl access

If, for example, you want to access the CPU memory area (absolute Pl access (Page 222))
%IB10, but can respond flexibly to changes in your program, then declare a my/nputvariable

with this CPU memory area as follows:

VAR
myInput AT %IB10 : BYTE;
END VAR

If you want to use the integer value of the memory area, declare the my/nputvariable as

follows:

VAR
myInput AT $IB10 : SINT;
END VAR

If you want to use a CPU memory area other than %IB10 in your program at a later time, you
only need to change the absolute Pl access in the variable declaration.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.4.6 Creating an 1/O variable for access to the fixed process image of the BackgroundTask

You create I/O variables in the symbol browser of the detail view; to do this, you must be
working in offline mode.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the I/O element in the subtree of the
SIMOTION device.

2. In the detail view, select the Symbol browser tab and scroll down to the end of the
variable table (empty row).

3. In the last (empty) row of the table, enter or select the following:
— Name of variable.

— Under I/O address, the absolute Pl access according to the "syntax for the identifier
for an absolute Pl access (Page 222)"
(exception: The syntax %IXn.x or %QXn.x is not permitted for data type BOOL).

— Data type of the I/O variables according to the "possible data types of the symbolic Pl
access (Page 224)".

4. Select optionally the display format used to monitor the variable in the symbol browser.

You can now access this variable using the symbol browser or any program of the
SIMOTION device.

Note

I/O variables can only be created in offline mode. You create the 1/O variables in SIMOTION
SCOUT and use them in your program sources.

Note that you can read and write outputs but you can only read inputs.

Before you can monitor and modify new or updated 1/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables (Page 226)".

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 225

Integration of ST in SIMOTION

5.3 Access to inputs and outputs (process image, I/O variables)

5.3.5 Accessing I/O variables
You have created an |/O variable for:
® Direct access or process image of the cyclic tasks (Page 214).
® Access to the fixed process image of the BackgroundTask (Page 220).

You can use this I/O variable just like any other variable.

NOTICE

Consistency is only ensured for elementary data types.

When using arrays, the user is responsible for ensuring data consistency.

Note

If you have declared unit variables or local variables of the same name (e.g. var-name),
specify the 1/0O variable using _device.var-name (predefined namespace, see the
"Predefined namespaces" table in "Namespaces").

It is possible to directly access an I/O variable that you created as a process image of a
cyclic task. Specify direct access with _direct.var-name or _device._dlirect.var-name.

If you want to deviate from the default behavior when errors occur during variable access,
you can use the _gefSafeValue and _setSafeValue functions (see SIMOTION Basic
Functions Function Manual).

For errors associated with access to I/O variables, see SIMOTION Basic Functions Function
Manual.

SIMOTION ST Structured Text
226 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.4 Using libraries

54 Using libraries

Libraries provide you with user-defined data types , functions and function blocks that can be
used from all SIMOTION devices.

Libraries can be written in all programming languages; they can be used in all program
sources (e.g. ST source files, MCC units).

You can obtain more details on inserting and managing libraries in the online help.

NOTICE

The same rules as for the names of program source files apply to the library names, see
Insert ST source file (Page 21). In particular, the permissible length of the name depends
on the SIMOTION Kernel version:

e As of Version V4.1 of the SIMOTION Kernel: maximum 128 characters.

e Up to Version V4.0 of the SIMOTION Kernel: maximum 8 characters.
With versions of the SIMOTION Kernel up to V4.0, a violation of the permissible length of

the library name may not be detected until a consistency check or a download of the project
is performed!

541 Compiling a library

In libraries, you can use all ST commands except for the ones listed in the table. In addition,
you are not allowed to access some variables; these variables are also listed in this table .

Table 5-35 lllegal ST commands and variable access in libraries

Prohibited commands:
e _geftTaskldfunction (see SIMOTION Basic Functions Function Manual).
o _getAlarmld function (see SIMOTION Basic Functions Function Manual).
e _checkEqualTask function (see SIMOTION Basic Functions Function Manual).
e Following functions that are intended for SIMOTION kernel versions up to V3.0:
— Task control commands
— Commands for runtime measurement of tasks
— Commands for message programming
With these functions, the name of the task of the configured message is transferred.

¢ If the library is not device-dependent (i.e. compiled without reference to a SIMOTION device or
SIMOTION Kernel version):

— System functions of SIMOTION devices (see the Parameter Manual for SIMOTION devices)
— Version-dependent system functions

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 227

Integration of ST in SIMOTION

5.4 Using libraries

Prohibited variable accesses:

e Unit variables (retentive and non-retentive)

¢ Global device variables (retentive and non-retentive)

e |/O variables

¢ Instances of the technology objects and their system variables

e Variables of task names and configured messages (_fask and _alarm namespaces, see
Namespaces (Page 233), Predefined namespaces (Page 233) table)

e If the library is not device-dependent (i.e. compiled without reference to a SIMOTION device or
SIMOTION Kernel version):

— System variables of SIMOTION devices (see the Parameter Manual for SIMOTION devices)

— Configuration data of technology objects (see Parameter Manual of configuration data for the
relevant SIMOTION technology package)

Note
The Program status debug function is not available in libraries.

Compiling an individual library

To compile an individual library, proceed as follows:

1. Select the library in the project navigator.

2. Select the Edit > Object Properties menu command.
3. Select the TPs/TOs tab.
4

. Select the SIMOTION devices (with SIMOTION kernel version) and the technology
packet that you want to use as a basis for compiling the library; see the SIMOTION Basic
Functions Function Manual.

5. Select Accept and compile from the context menu.

The library is compiled with reference to all selected SIMOTION devices, SIMOTION kernel
versions and technology packages (and independently of devices).

NOTICE

If the library to be compiled imports another library, note the following:

1. For the imported library, at least the same devices and SIMOTION kernel versions must
be selected as for the importing library.

Alternatively, the imported library can be compiled independently of devices if the
prerequisites for this are fulfilled (refer to the SIMOTION Basic Functions Function
Manual).

2. The imported library must already be compiled individually with reference to all
configured devices, kernel versions and technology packages.

Compilation of the library as part of a project-wide compilation is generally not sufficient.

SIMOTION ST Structured Text
228 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.4 Using libraries

Compiling a library as part of a project-wide compilation

When you compile the whole SIMOTION project (e.g. by choosing Project > Save and
recompile all or by performing an XML import), the libraries used are also compiled.

NOTICE

When performing project-wide compilation, note the following:

1. The system automatically identifies dependencies between libraries and selects the
appropriate compilation sequence.

2. Alibrary is only compiled with reference to the SIMOTION devices (including versions of
the SIMOTION kernel) that are configured in the project and which use the library.

3. Other SIMOTION devices and kernel versions set for the library are ignored.

54.2 Know-how protection for libraries

You can protect libraries and their source files against unauthorized access by third parties.
Protected libraries or sources can only be opened or exported as plain text files by entering a
password.

You can:
® Provide individual sources of a library with know-how protection:
Only the sources are protected against unauthorized access.

The setting of the SIMOTION devices including the versions of the SIMOTION Kernel and
the technology packages, for which the library is to be compiled, can still be changed and
adapted by the user. Please refer to the SIMOTION Basic Functions Function Manual.

The user can thus use the library for other SIMOTION devices and kernel versions.
® Provide the library with know-how protection:

The following is then protected against unauthorized access:

— All sources of the library

— The setting of the SIMOTION device including the versions of the SIMOTION Kernel
and the technology packages for which the library is to be compiled.

You thus prevent that the user can use the library for other SIMOTION devices and
kernel versions.

Only use this setting if this is intended.

For information about how to apply know-how protection, refer to the online help.

Note

If you export in XML format, the libraries or sources are exported in an encrypted form.
When importing the encoded XML files, the know-how protection, including login and
password, remains in place.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 229

Integration of ST in SIMOTION

5.4 Using libraries

5.4.3

Using data types, functions and function blocks from libraries

Before using data types, functions or function blocks from libraries, you must make them
known to the ST source file. To do so, use the following construct in the interface section of
the ST source file:

USELIB library-name [AS namespace];

In this case, library-name is the name of the library as it appears in the project navigator.

When multiple libraries are to be specified, enter them as a list separated by commas, e.g.:

USELIB library-name 1 [AS namespace 1],
library-name 2 [AS namespace 2],
library-name 3 [AS namespace 1],

You can use the optional AS namespace add-on to define a namespace (see
Namespaces (Page 233)).

® You can then access data types, functions, and function blocks in the library that have the
same name as such an ST source file of a SIMOTION device (in the PROGRAMS folder).

® You can also use namespaces to change the names of data types, functions and function
blocks in the library so that they have different names.

You can also assign the same namespace to different libraries.

Table 5-36 Example of use of namespaces with libraries

INTERFACE
USELIB Bib 1 AS NS 1, Bib 2 AS NS_2;
PROGRAM Main Program;

END_INTERFACE

IMPLEMENTATION
FUNCTION Functionl : VOID
VAR
ComID :
END VAR
ComId := getCommandId();
END FUNCTION

CommandIdType;

PROGRAM Main program
functionl () ;
NS 1.Varl:=1;
NS_Z.Var1:=2;
NS 1.functionl();
NS 2.functionl();
END PROGRAM
END_IMPLEMENTATION

// Function from this source

// Function from the Bibl library
// Function from the Bib2 library

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.5 Use of the same identifiers and namespaces

5.5 Use of the same identifiers and namespaces

5.5.1 Use of the same identifiers

It is possible to use unit variables and local variables (program variables, FB variables, FC
variables) with the same name. When compiling a program source, the compiler searches
for identifiers beginning with the current POU. The smaller validity range always takes
priority over the larger validity range.

You can therefore use the same identifiers in different source file sections, as long as the
rules below are adhered to. If a higher-level identifier is hidden by an identifier in a unit or
POE, the compiler issues a warning.

NOTICE

Under certain circumstances, the compiler may not issue a warning if, for example, the
associated technology package is not imported.

Identifiers in a program organization unit (POU)

All following identifiers in a POU must be unique:

® | ocal variables of the POU.

® | ocal data types of the POU.

They may not also be identical with the following identifiers:

® Reserved identifiers.

® [dentifiers of the POU itself.

The compiler issues a warning when the following identifiers are hidden:

e Unit variables, data types and POU or the same or imported units

e Standard system functions, standard system function blocks and associated data types

e System functions and system data types of the SIMOTION device

® Program organization units (POU) and data types from imported libraries
— This can be resolved by entering a user-defined namespace.

e System functions and system data types from imported technology packages.
— This can be resolved by entering a user-defined namespace.

o SIMOTION device variables (system variables, I/O variables, global device variables)
— This can be resolved by entering the predefined namespace _device.

® Technology objects configured on the SIMOTION device

— This can be resolved by entering the predefined namespace _fo.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 231

Integration of ST in SIMOTION

5.5 Use of the same identifiers and namespaces

Identifiers in a unit

All following identifiers in a unit must be unique:

e Unit variables (declared in the interface or implementation section)

e Data types (declared in the interface or implementation section)

® Program organization units (POUs)

These must not be identical to the following identifiers either:

® Reserved identifiers.

e Unit variables, data types and POU imported units.

e Standard system functions, standard system function blocks and associated data types.

e System functions and system data types of the SIMOTION device.

® Program organization units (POU) and data types from imported libraries.
— This can be resolved by entering a user-defined namespace.

e System functions and system data types from imported technology packages.
— This can be resolved by entering a user-defined namespace.

The compiler issues a warning when the following identifiers are hidden:

e SIMOTION device variables (system variables, 1/0 variables, global device variables).
— This can be resolved by entering the predefined namespace _device.

® Technology objects configured on the SIMOTION device.

— This can be resolved by entering the predefined namespace _fo.

Identifiers on the SIMOTION device (e.g., I/O variables, global device variables)
All the following identifiers on the SIMOTION device must be unique:
® |/O variables
® Global device variables
e System variables of the SIMOTION device
e System functions and system data types of the SIMOTION device.
These must not also be identical to the following identifiers:
® Reserved identifiers.

e Standard system functions, standard system function blocks and associated data types.

SIMOTION ST Structured Text
232 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.5 Use of the same identifiers and namespaces

Example
The following example illustrates this situation. It shows that for use of identical names for
unit variables (large validity range) and FC variables (small variable scope), only the
variables declared in the function are valid within this source file section. The unit variables
are only valid in POUs in which no local variables of the same name were declared. See the
example.
Table 5-37 Example of identifier validity
TYPE
type a : (enuml, enum2, enum3);
END TYPE
VAR GLOBAL
var_a, var b : DINT; // Unit variables
END VAR
FUNCTION fc 1 : VOID
VAR
var a : type a; // Declaration hides UNIT variable
var c : DINT; // Local variable
END VAR
// Permitted statements
var_a := enum2; // Access to local variable
var b := 100; // Access to unit variable
var ¢ := -1; // Access to local variable
// Invalid statement
// var_a := 200;
END_FUNCTION
FUNCTION fc 2 : VOID
VAR
var b : type a; // Declaration hides UNIT variable
var ¢ : type a; // Local variable
END VAR
// Permitted statements
var a := -100; // Access to unit variable
var b := enum3; // Access to local variable
var_c := enuml; // Access to local variable
// Invalid statement
// var b := 200;
END_ FUNCTION
5.5.2 Namespaces

You can also access data types, unit variables, functions, and function blocks defined
outside of a program source (e.g. in libraries, technology packages, and on the SIMOTION
device) using their names.

When compiling a program source, the compiler searches for identifiers beginning with the
current POU. The data types, variables, functions, or function blocks declared in a program
source therefore hide identifiers with the same name which have been defined outside the
source, see Use of the same identifiers (Page 231). In order to still access these hidden
identifiers, you can use namespaces in certain cases.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 233

Integration of ST in SIMOTION

5.5 Use of the same identifiers and namespaces

User-defined nhamespace

Example

234

In the import instruction for libraries and technology packages, you can define namespaces
in order to reach the data types, functions, or function blocks of these libraries and
technology packages.

USELIB library-name 1 [AS lib namespace 1],
library-name 2 [AS lib namespace 2],
library-name 3 [AS lib namespace 1],

USEPACKAGE tp-name 1 [AS tp namespace 1],
tp-name 2 [AS tp namespace 2],
tp-name 3 [AS tp namespace 1],

You can also use namespaces to make names consistent within different libraries.

If you wish to use a data type, a function or a function block from a library or a technology
package, place the namespace identifier in front of the name, separated by a period, for
example, namespace.fc-name, namespace.fb-name, namespace.type-name.

The following example shows how to select the Cam technology package, assign it the
namespace Cam1 and use the namespace:

Table 5-38 Example of selecting a technology package and using a namespace

INTERFACE
USEPACKAGE Cam AS Caml;
USES ST 2;
FUNCTION functionl;

END INTERFACE

IMPLEMENTATION
FUNCTION functionl : VOID
VAR _INPUT
p_Axis : posAxis;
END VAR
VAR
retval : DINT;
END VAR

retVal:= Caml. enableAxis (
axis := p Axis,
nextCommand := Caml.WHEN COMMAND DONE,
commandId := getCommandId());
END_ FUNCTION
END IMPLEMENTATION

NOTICE

If a namespace is defined for an imported library or technology package, this must always
be specified if a function, function block, or data type from this library or technology
package is being used. See above example: Cam1._enableAxis,
Cam1.WHEN_COMMAND_DONE.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

Predefined namespace

Namespaces are

5.5 Use of the same identifiers and namespaces

predefined for device- and project-specific variables as well as TaskID and

AlarmID variables. If necessary, write their designation before the variable names, separated
by a period, for example, _device.var-name or _task.task-name

Table 5-39 Predefined namespaces

Name space

Description

_alarm

For Alarmld: The _alarm.name variable contains the Alarmld of the message with
the name identifier (see SIMOTION Basic Functions Function Manual).

_device

For device-specific variables (global device variables, 1/0 variables, and system
variables of the SIMOTION device).

_direct

For direct access to I/O variables — see Direct access and process image of the
cyclical tasks (Page 214).

Local namespace for _device. Nesting as in _device._direct.name is permitted.

_project

For names of SIMOTION devices in the project; only used with technology objects
on other devices.

With unique project-wide names of technology objects, used also for these names
and their system variables.

_task

For TasklD: The _task.name variable contains the Taskld of the task with the
name identifier (see SIMOTION Basic Functions Function Manual).

_to

For technology objects configured on the SIMOTION device, and their system
variables and configuration data.

Not for system functions and data types of the technology objects. In this case, if
necessary, use the user-defined namespace for the imported technology package

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

235

Integration of ST in SIMOTION

5.5 Use of the same identifiers and namespaces

Identifiers of the namespaces | Proiect I Hierarchy
rojec
| User-defined I —| Technology packages I
System functions and system data types of the TO I
| User-defined I —| Libraries I
\—{ Functions, Function Blocks, Data Types I
C _project) —| Device 1 I
—(_to) —| Technology objects I
Configuration data of the TO I
System variables of the TO I
—(_task) —| Task names I
—(_alarm) —| Messages I
—(_device) I System variables of the device I

—| Global device variables I
o 1/0 variables |
—| Process image of the cyclic Tasks I
—| Direct access I
I IEC and device system data types I
—| IEC and device system functions I
—| Unit variables, unit data types I
—| Program organization units I
\—{ Local variables and data types I
C _project) —| Device 2 I
_to) Technology objects I
\—{ System variables of the TO I
Figure 5-7 Namespaces and identifier hierarchy

236

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.6 Reference dala

5.6 Reference data

The reference data provide you with an overview of:

e Utilized identifiers with information on their declaration and use
(Cross reference list)

® Function calls and their nesting
(Program structure)

® For the memory requirement of various data areas of the program sources
(code attribute)

See also
Cross-reference list (Page 237)
Program structure (Page 239)
Code attributes (Page 241)
5.6.1 Cross-reference list

The cross-reference list shows all identifiers in program sources (e.g. ST source files, MCC
source files):

® Declared as variables, data types, or program organization units (program, function,
function block)

e Used as previously defined type identifiers in declarations

® Used as variables in the statement section of a program organization unit

You can generate the cross-reference list as required for:

® An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library)

5.6.1.1 Creating a cross-reference list
To create the cross-reference list:

1. In the project navigator, select the element for which you want to create a cross-reference
list.

2. Select the menu Edit > Reference data > Create.

The cross-reference list is displayed in its own tab in the detail view.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 237

Integration of ST in SIMOTION

5.6 Reference data

56.1.2 Content of the cross-reference list

The created cross-reference list shows the following for each identifier:

® The identifier name (for structures and enumerators, also the individual components and
elements).

® The type (e.g. data type, POU type).

® The declaration location (e.g. name of the program source, name of the technology
package).

e [nformation about the current use of the identifier:

238

Type of the use (e.g. R = read access, W = write access, variable type = declaration),
Path details of the program source (SIMOTION device, name of the program source),
Area in the program source (e.g. implementation section, POU name),

Program language of the program source,

Line number in the ST source file (or block number in the MCC chart or reference
number in the LAD/FBD source).

Note

The generated cross-reference list is saved automatically and can be displayed
selectively after selecting the appropriate element in the project navigator. To display
the cross-reference list, select the Edit > Reference data > Display > Cross-Reference
List menu command.

When a cross-reference list is recreated, it is updated selectively (corresponding to the
selected element in the project navigator). Other existing cross-reference data are
retained and displayed, if applicable.

Note
Activated single-step monitoring in MCC programming

Each task is assigned two variables TSI#dwuser_1 and TSIl#dwuser_2, which can be
written and read.

When single step monitoring is activated, the compiler uses these variables to control
single step monitoring if at least one MCC chart is assigned to the relevant task. The
user then cannot use these variables, because their contents are overwritten by single
step monitoring and may cause undesirable side effects.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.6 Reference dala

5.6.1.3 Working with a cross-reference list
In the cross-reference list you are able to:
e Sort the column contents alphabetically
e Set filter functions (via context menu, which you can call with the right mouse button)

® Copy contents to the clipboard in order, for example, to paste them into a spread-sheet
program

® Print contents

® Open the referenced program source and position the cursor on the relevant line of the
ST command (or MCC or LAD/FBD element):

— Double-click on the corresponding line in the cross-reference list.
or

— Place the cursor in the corresponding line of the cross-reference list and click the Go
to application button.

Further details about working with cross-reference lists can be found in the online help.

5.6.2 Program structure
In the program structure are all function calls and their nesting within a selected element.

When the cross-reference list has been successfully created, you can display the program
structure selectively for:

® An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library, individual program source within a library)
Follow these steps:

1. In the project navigator, select the element for which you want to display the program
structure.

2. Select the menu Edit > Reference data > Display > Program structure.

The cross-reference tab is replaced by the program structure tab in the detail view.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 239

Integration of ST in SIMOTION

5.6 Reference data

5.6.2.1

240

Content of the program structure

A tree structure appears, showing:

® as base respectively

— the program organization units (programs, functions, function blocks) declared in the
program source, or

— the execution system tasks used

® below these, the subroutines referenced in this program organization unit or task.

For structure of the entries, see table:

Table 5-40 Elements of the display for the program structure

Element

Description

Base
(declared POU or
task used))

List separated by a comma

Identifier of the program organization unit (POU) or task

Identifier of the program source in which the POU or task was declared,
with add-on [UNIT]

Minimum and maximum stack requirement (memory requirement of the
POU or task on the local data stack), in bytes [Min, Max]

Minimum and maximum overall stack requirement (memory requirement of

the POU or task on the local data stack including all called POUs), in bytes
[Min, Max]

Referenced POU

List separated by a comma:

Identifier of called POU

Optionally: Identifier of the program source / technology package in which
the POU was declared:

Add-on (UNIT): User-defined program source

Add-on (LIB): Library

Add-on (TP): System function from technology package
Only for function blocks: Identifier of instance

Only for function blocks: Identifier of program source in which the instance
was declared:

Add-on (UNIT): User-defined program source

Add-on (LIB): Library

Line of (compiled) source in which the POU is called; several lines are
separated by "|".

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.6 Reference dala

5.6.3 Code attributes

You can find information on or the memory requirement of various data areas of the program
sources under code attribute.

When the cross-reference list has been successfully created, you can display the code
attributes selectively for:

® An individual program source (e.g. ST source file, MCC source file, LAD/FBD source)
® All program sources of a SIMOTION device

® All program sources and libraries of the project

® Libraries (all libraries, single library, individual program source within a library)

Follow these steps:

1. In the project navigator, select the element for which you want to display the code
attributes.

2. Select the Edit > Reference data > Display > Code attributes menu.

The Cross-references tab is now replaced by the Code attributes tab in the detail view.

5.6.3.1 Code attribute contents
The following are displayed in a table for all selected program source files:
e |dentifier of program source file,
® Memory requirement, in bytes, for the following data areas of the program source file:

— Dynamic data: All unit variables (retentive and non-retentive, in the interface and
implementation sections),

— Retain data: Retentive unit variables in the interface and implementation section,
— Interface data: Unit variables (retentive and non-retentive) in the interface section,

o Number of referenced sources.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 241

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

5.7 Controlling the preprocessor and compiler with pragmas

A pragma is used to insert an ST source file text (e.g. statements), which influences the
compilation of the ST source file.

Pragmas are enclosed in { and } braces and can contain

(see figure):

® Preprocessor statements for controlling the preprocessor, see Controlling the
preprocessor (Page 243).

The pragmas with preprocessor statements contained in an ST source file are evaluated
by the preprocessor and interpreted as control statements.

e Attributes for compiler options to control the compiler, see Controlling compiler with
attributes (Page 247).

The pragmas with attributes for compiler options contained in an ST source file are
evaluated by the compiler and interpreted as control statements.

Pragma (unformatted)

Preprocessor statement

(D — (D)

Attribute

Figure 5-8 Pragma syntax

NOTICE

Be sure to use the correct pragma syntax (e.g. upper- and lower-case notation of
attributes).

Unrecognized pragmas are ignored with no warning message.

SIMOTION ST Structured Text
242 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

5.71 Controlling a preprocessor

The preprocessor prepares an ST source file for compilation. For example, character strings
can be defined as replacement texts for identifiers, or sections of the source program can be
hidden/shown for compilation.

The preprocessor is disabled by default. You can activate it as follows:

® Globally for all program source files and programming languages within the project, see
"Global settings of the compiler (Page 45)".

® | ocal for a program source file, see "Local compiler settings (Page 46)".

During the compilation of a program source file, you will be informed about the preprocessor
actions. This requires, however, that the display of warnings class 7 is activated, see
Meaning of the warning classes (Page 49). You specify the details for issued warnings and
information:

® |n the global or local settings of the compiler.

e With the _U7_PoeBId_CompilerOption := warning: r.off or warning: mon attribute within an
ST source file, see "Controlling compiler with attributes (Page 247)".

Like compiler messages, information about the preprocessor is shown in the "Compile/check
output" tab of the detail view.

Note

You can also view the text of the ST source file modified by the preprocessor:
1. Open the ST source file.
2. Select the ST source file > Execute preprocessor menu command.

The modified source text is shown in the "Compile/check output" tab of the detail view.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 243

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

5711 Preprocessor statement
You can control the preprocessor by means of statements in pragmas. The statements
specified in the following syntax diagram can be used. These statements act on all
subsequent lines of the ST source file.
They can be used in ST source files of a SIMOTION device or a library.
You can make definitions for the preprocessor in the property dialog box of the ST source file
(see Making preprocessor definitions (Page 51)). This enables you also to control the
preprocessor with ST source files with know-how protection (see Know-how protection for
ST sources (Page 51)).
Preprocessor statement (unformatted)
—C #define)—' Identifier IJ—{ Text I—L
4{ #undef)—' Identifier Ii
4< #ifdef)—| Identifier |7
—— —>
4(#ifndef)—| Identifier |7
e A
{ #else)
e ; A
{ #endif)
Each statement must begin with a new line and end with a line break.
The following order must be maintained for the statements below:
#ifdef — #else (optional) — #endif or #ifndef — #else (optional) — #endif.
Text: String of any characters except:
\ (backslash), ’ (single quote) and ” (double quote).
The keywords USES, USELIB and USEPACKAGE are not permitted.
Figure 5-9 Syntax of a preprocessor statement
SIMOTION ST Structured Text
244 Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

Table 5-41 Preprocessor statements

Statement Meaning

#define The specified identifier will be replaced below by the specified text.
Permissible characters: See table footnote.

#undef The replacement rule for the identifier is cancelled.

#ifdef For variant formation (conditional compilation)

If the specified identifier is defined, the following program lines (until the next
pragma that contains #else or #endif) are compiled by the compiler.

#ifndef For variant formation (conditional compilation)

If the specified identifier is not defined, the following program lines (until the next
pragma that contains #else or #endif) are compiled by the compiler.

#else For variant formation (conditional compilation)
Alternative branch to #ifdef or #ifndef.

The following program lines (until the next pragma containing #endif) are
compiled by the compiler, if the preceding query with #ifdef or #ifndef was not
fulfilled.

#endif Concludes variant formation with #ifdef or #ifndef.

Permissible characters:
e Foridentifiers: In accordance with the rules for identifiers (Page 73).

e For text: Sequence of any characters other than \ (backslash), ’ (single quote) and ” (double
quote). The keywords USES, USELIB and USEPACKAGE are not permitted.

Note

Each preprocessor statement must begin with a new line and end with a line break.
Consequently, the curly brackets ({ and }) enclosing the pragma must be placed in separate
lines of the ST source file!

In the case of pragmas with #define statements, please note:

e Pragmas with #define statements in the interface section of an ST source file are
exported. The defined identifiers can be imported with the USES statement into other ST
source files of the same SIMOTION device or of the same library.

¢ Identifiers defined in pragmas of libraries cannot be imported into ST source files of a
SIMOTION device.

¢ Redefinition of reserved identifiers is not possible.
You can also make preprocessor definitions in the property dialog box of the ST source file.

In the case of different definitions of the same identifiers, #define statements within the ST
source file have priority.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 245

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

5.7.1.2

Table 5-42 Example of preprocessor statements

ST source file

With preprocessor statements
INTERFACE
FUNCTION BLOCK fbl;
VAR GLOBAL
g var : INT;
END_ VAR
// Preprocessor definitions
{
#define my define g var
#define my call f (my define)
}
// my define -> g var
// my call -> f(g_var)
END INTERFACE

IMPLEMENTATION
FUNCTION f : INT
VAR INPUT
i : INT;
END VAR
f :=1i;
END FUNCTION

FUNCTION BLOCK fbl
VAR INPUT
i var : INT;
END VAR
VAR OUTPUT
o_var : INT;

END VAR

my define := i var;
// Delete the preprocessor definition
// For my define
{
#undef my define
}

o var := my call + 1;
{
#ifdef my define
}

my define := i var;
{
#endif
}

END_ FUNCTION BLOCK

END IMPLEMENTATION

246

Example of preprocessor statements

Preprocessor output

INTERFACE
FUNCTION_BLOCK fbl;
VAR GLOBAL

g_var : INT;
END_ VAR

END_ INTERFACE

IMPLEMENTATION
FUNCTION £ : INT
VAR INPUT
i : INT;
END VAR
f = 1i;
END_FUNCTION

FUNCTION BLOCK fbl

VAR INPUT
i var : INT;
END VAR
VAR_OUTPUT
o var : INT;
END VAR
g var := 1 var;
{
}
o var := f(g var)

}
END FUNCTION BLOCK
END IMPLEMENTATION

+ 1;

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION
5.7 Controlling the preprocessor and compiler with pragmas

5.7.2 Controlling compiler with attributes

You can use attributes within a pragma to control the compiler.

Attribute (unformatted)

Attribute identifier Attribute value

-] Identifier |—®—| Text |—®—>

Figure 5-10 Syntax of an attribute for compiler options

Table 5-43 Permissible attributes for compiler options

Attribute identifier Attribute value | Meaning

_U7_PoeBld_CompilerOption The attribute affects the output of compiler warnings within an ST source file. It
affects all subsequent lines of the ST source file.
warning: m.off Warnings specified by the number n are not displayed
warning:/z.on Warnings specified by the number 7 are displayed

Permissible value for .
n=0to 7: Warning class, see also meaning of the warning classes (Page 49).
n=16000 and higher: Number of a warning.

HMI_Export The attribute changes the unit variables available on HMI devices by default. It must
be placed directly after the associated keyword of the following declaration blocks:

o VAR_GLOBAL
o VAR_GLOBAL RETAIN
It affects only the unit variables declared in the associated declaration block.

Detailed description of the HMI export, in particular the effect of the attribute
depending on the version of the SIMOTION kernel: see Variables and HMI
devices (Page 208).

FALSE In the interface section of an ST source file. The unit variables
declared in the associated declaration block are not available on
HMI devices.

TRUE In the implementation section of an ST source file. The unit
variables declared in the associated declaration block are
available on HMI devices.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 247

Integration of ST in

SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

Attribute identifier

Atiribute value | Meaning

BlockInit_OnChange

Only as of Version V3.2 of the SIMOTION kernel.

The attribute changes the standard definition whether a download in RUN mode is

possible when a change is made to the version identification of the associated

declaration block. It must be placed directly after the associated keyword of the

following declaration blocks:

e VAR_GLOBAL (in the interface and implementation section)

e VAR_GLOBAL RETAIN (in the interface and implementation section)

e VAR (only for programs in a unit when the "Create program instance data only
once" compiler option is active).

It affects only the variables declared in the associated declaration block.

See also Version ID of global variables and their initialization during
download (Page 207).

FALSE Download in RUN mode is not possible when the version
identification of the declaration block is changed (default).

TRUE Download in RUN mode is possible despite the change of the
version identification of the declaration block. The variables of the
declaration block are also initialized.

BlockInit_OnDeviceRun Only as of Version V4.1 of the SIMOTION kernel.

The attribute changes the standard definition whether the variables of the associated
declaration block will be initialized for the transition to the RUN mode. It must be
placed directly after the associated keyword of the following declaration blocks:

e VAR _GLOBAL (in the interface and implementation section)

e VAR (only for programs in a unit when the "Create program instance data only
once" compiler option is active).

It affects only the variables declared in the associated declaration block.
See also Memory ranges of the variable types (Page 194).

DISABLE The variables declared in the associated declaration block are not
initialized in the transition of the mode from STOP to RUN
(default).

ALWAYS The variables declared in the associated declaration block are
initialized in the transition of the mode from STOP to RUN.

NOTICE

Be sure to use the correct upper- and lower-case notation for attributes!

Note

The insert, delete or change of the HMI_Export, BlockInit_OnChange or
Blocklnit_OnDeviceRun attributes in a declaration block does not change its version
identification!

248

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Integration of ST in SIMOTION

5.7 Controlling the preprocessor and compiler with pragmas

Table 5-44 Example of attributes for compiler options

INTERFACE
VAR GLOBAL
{ HMI Export := FALSE;
BlockInit OnChange := TRUE; }
// No HMI export, download in RUN possible
x : DINT;
END VAR

FUNCTION BLOCK fbl;
END_ INTERFACE

IMPLEMENTATION
VAR GLOBAL
{ HMI Export := TRUE;
BlockInit OnDeviceRun := ALWAYS; }
// HMI export, initialization for the STOP -> RUN transition
y : DINT;
END VAR
FUNCTION BLOCK fbl
VAR INPUT
i var : INT;
END_ VAR
VAR OUTPUT
o_var : INT;
END VAR
{ U7 PoeBld CompilerOption := warning:2:on; }
o var := REAL TO INT(1.0); // Warning 16004
{ U7 PoeBld CompilerOption := warning:2:0ff; }
o_var := REAL TO INT(1.0); // No warning 16004
{ U7 PoeBld CompilerOption := warning:16004:on; }
o var := REAL TO INT(1.0); // Warning 16004
{ U7 PoeBld CompilerOption := warning:16004:0ff; }
o _var := REAL TO INT(1.0); // No warning 16004
{ U7 PoeBld CompilerOption := warning:2:off;
U7 PoeBld CompilerOption := warning:16004:on; }
o _var := REAL TO INT(1.0); // Warning 16004

END_ FUNCTION BLOCK
END IMPLEMENTATION

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 249

Integration of ST in SIMOTION

5.8 Jump statement and label

5.8 Jump statement and label

In addition to control statements (see Control statements (Page 130)), a jump statement is
also available.

You program jump statements with the GOTO statement and specify the jump label to which
you want to jump. Jumps are only permitted within a POU.

Enter the jump label (separated by a colon) in front of the statement at which you want the
program to resume.

Alternatively, you can declare the jump labels in the POU (with the structure
LABEL/END_LABEL in the POU). Only the declared jump labels can then be used in the
statement section.

Syntax of jump statements and labels:

Table 5-45 Example of syntax for jump statements

FUNCTION func : VOID

VAR
x, y, z BOOL;
END VAR
LABEL
lab 1, lab 2; // Declaration of the jump labels
END LABEL
X 1= y;
lab 1 @y := z; // Jump label with statement
IF x = y THEN
GOTO lab 2; // Jump statement
END_IF;
GOTO lab 1; // Jump statement
lab 2 : ; // Jump label with blank statement

END_FUNCTION

Note

You should only use the GOTO statement in special circumstances (for example, for
troubleshooting). It should not be used at all according to the rules for structured
programming.

Jumps are only permitted within a POU.

The following jumps are illegal:

e Jumps to subordinate control structures (WHILE, FOR, etc.)
e Jumps from a WAITFORCONDITION structure

e Jumps within CASE statements

Jump labels can only be declared in the POU in which they are used. If jump labels are
declared, only the declared jump labels may be used.

SIMOTION ST Structured Text
250 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging 6

This chapter describes various sources of programming errors and shows you how to
program efficiently. You also learn what options are available for program testing. All
possible compiler error messages, namely, compiler errors, see Compiler Error Messages
and Remedies (Page 350). Possible reactions and remedies are described for each error.

6.1 Notes on avoiding errors and on efficient programming

The SIMOTION Basic Functions Function Manual lists some common error sources, which
hinder the compilers or prevent the proper execution of a program. There are notes on, e.g.:

® Data types for assigning arithmetic expressions

e Starting functions in cyclic tasks

e Wait times in cyclic tasks

® Errors on download

® CPU does not switch to RUN

® CPU goes to STOP

® Size of the local data stack

® efc.

In addition, you will also find notes on efficient programming there, particularly for
® runtime-oriented programming

® change-optimized programming

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 251

Error Sources and Program Debugging
6.2 Program debugging

6.2 Program debugging

Syntax errors are detected and displayed by the ST compiler during the compilation
procedure. Runtime errors in the execution of the program are displayed by system alarms
or lead to the operating mode STOP. You can find logical programming errors with the test
functions of ST, e.g. with the symbol browser, status program, trace.

To achieve the same results as shown below using the test functions, use of the sample
program in Creating a sample program (Page 59) is recommended.

6.2.1 Modes for program testing

6.2.1.1 Modes of the SIMOTION devices
Various SIMOTION device modes are available for program testing.
How to select the mode of a SIMOTION device:
1. Highlight the SIMOTION device in the project navigator.
2. Select the "Test mode" context menu.
3. Select the required mode (see following table).
If you have selected "Debug mode™:
— Accept the safety information.
— Parameterize the sign-of-life monitoring.

Observe the following section: Important information about the life-sign
monitoring (Page 254).

4. Confirm with "OK".
The SIMOTION device switches to the selected mode.
When the SIMOTION device switches to "Debug mode":

— A connection to the target system will be established automatically (online mode) if
SIMOTION SCOUT is currently in offline mode.

— The activated debug mode is indicated in the status bar.

— The breakpoints toolbar is displayed.

SIMOTION ST Structured Text
252 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging
Table 6-1 Modes of a SIMOTION device
Setting Meaning
Process mode Program execution on the SIMOTION device is optimized for maximum system performance.

The following diagnostic functions are available, although they may have only restricted
functionality because of the optimization for maximum system performance:

e Monitor variables in the symbol browser or a watch table.
e Program status (only restricted):

— Restricted monitoring of variables (e.g. variables in loops, return values for system
functions).

— As of version V4.0 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.

— Up to version V3.2 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored.

e Trace tool (only restricted) with measuring functions for drives and function generator, see
online help:

— No more than one trace on each SIMOTION device.

Test mode The diagnostic functions of the process mode are available to the full extent:
e Monitor variables in the symbol browser or a watch table.
e Program status:

— Monitoring of all variables possible.

— As of version V4.0 of the SIMOTION kernel:

Several program sources (e.g. ST sources, MCC sources, LAD/FBD sources) can be
monitored per task.

— Up to version V3.2 of the SIMOTION kernel:

No more than one program source (e.g. ST source, MCC source, LAD/FBD source) can
be monitored per task.

e Trace tool with measuring functions for drives and function generator, see online help:
— No more than four traces on each SIMOTION device.

Note

Runtime and memory utilization increase as the use of diagnostic functions increases.
Debug mode This mode is available in SIMOTION kernel as of V3.2.

In addition to the diagnostic functions of the test mode, you can use the following functions:
o Breakpoints

Within a program source file, you can set breakpoints (Page 271). When an activated
breakpoint is reached, selected tasks will be stopped.

e Controlling MotionTasks

In the "Task Manager" tab of the device diagnostics, you can use task control commands for
MotionTasks, see the SIMOTION Basic Functions Function Manual.

No more than one SIMOTION device of the project can be switched to debug mode.
SIMOTION SCOUT is in online mode, i.e. connected with the target system.

Observe the following section: Important information about the life-sign monitoring (Page 254).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 253

Error Sources and Program Debugging

6.2 Program debugging

6.2.1.2 Important information about the life-sign monitoring

AWARN ING

You must observe the appropriate safety regulations.

Use the debug mode or a control panel only with the life-sign monitoring function activated
with a suitably short monitoring time! Otherwise, if problems occur in the communication
link between the PC and the SIMOTION device, the axis may start moving in an
uncontrollable manner.

The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect.

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Accept safety notes

After selecting the debug mode or a control panel, you must accept the safety notes. You
can set the parameters for the life-sign monitoring.

Proceed as follows:
1. Click the Settings button.
The "Debug settings" window opens.

2. Read there, as described in the following section, the safety notes and parameterize the
life-sign monitoring.

SIMOTION ST Structured Text
254 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

Parameterizing the life-sign monitoring
In the Life-sign monitoring parameterization window, proceed as described below:
1. Read the warning!
2. Click the Safety notes button to open the window with the detailed safety notes.
3. Do not make any changes to the defaults for life-sign monitoring.

Changes should only be made in special circumstances and in observance of all danger
warnings.

4. Click Accept to confirm you have read the safety notes and have correctly parameterized
the life-sign monitoring.

NOTICE

Pressing the spacebar or switching to a different Windows application causes:
¢ In debug mode for activated breakpoints:
— The SIMOTION device switches to STOP mode.
— The outputs are deactivated (ODIS).
e For controlling an axis or a drive using the control panel (control priority for the PC):
— The axis or the drive is brought to a standstill.
— The enables are reset.

AWARNING

This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STORP circuit in the hardware. The appropriate measures must be taken by
the user.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 255

Error Sources and Program Debugging

6.2 Program debugging

6.2.1.3

256

Life-sign monitoring parameters

Table 6-2 Life-sign monitoring parameter description

Field

Description

Life-sign monitoring

The SIMOTION device and SIMOTION SCOUT regularly
exchange life-sign signals to ensure a correctly functioning
connection. If the exchange of the life-sign is interrupted longer
than the set monitoring time, the following response occurs:

¢ In debug mode for activated breakpoints:
— The SIMOTION device switches to STOP mode.
— The outputs are deactivated (ODIS).

e For controlling an axis or a drive using the control panel
(control priority for the PC):

— The axis is brought to a standstill.
— The enables are reset.
The following parameterizations are possible:
e Active check box:
If the check box is selected, life-sign monitoring is active.

The deactivation of the life-sign monitoring is not always
possible.

e Monitoring time:
Enter the timeout.

Prudence

Do not make any changes to the defaults for life-sign
monitoring, if possible.

Changes should only be made in special circumstances and in
observance of all danger warnings.

Safety information

Please observe the warning!
Click the button to obtain further safety information.

See: Important information about the life-sign
monitoring (Page 254)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.2 Symbol Browser

6.2.2.1 Properties of the symbol browser

In the symbol browser, you can view and, if necessary, change the name, data type, and
variable values. In particular, you can: see the following variables:

® Unit variables and static variables of a program or function block
® System variables of a SIMOTION device or a technology object
® |/O variables or global device variables.

For these variables, you can:

® View a snapshot of the variable values

® Monitor variable values as they change

® Change (modify) variable values

However, the symbol browser can only display/modify the variable values if the project has
been loaded in the target system and a connection to the target system has been
established.

6.2.2.2 Using the symbol browser

Requirements

® Make sure that a connection to the target system has been established and a project has
been downloaded to the target system. To load the project with the sample program, see
"Executing the sample program (Page 66)".

® You can run the user program, but you do not have to. If the program is not run, you only
see the initial values of the variables.

The procedure depends on the memory area in which the variables to be monitored are
stored.

Variables in the user memory of the unit or in the retentive memory

You can use the symbol browser to monitor the variables contained in the user memory of
the unit or in the retentive memory, see Memory ranges of the variable types (Page 194):

e Retentive and non-retentive unit variables of the interface section of a program source file
(unit)

® Retentive and non-retentive unit variables of the implementation section of a program
source file (unit)

e Static variables of the function blocks whose instances are declared as unit variables.

® |n addition, if the program source file (unit) has been compiled with the "Create program
instance data only once" compiler option (Page 44):

— Static variables of the programs.

— Static variables of the function blocks whose instances are declared as static variables
of programs.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 257

Error Sources and Program Debugging

6.2 Program debugging

Follow these steps:
1. Select the program source file in the project navigator (e.g. ST_1).
2. In the detail view, click the Symbol browser tab.

You see in the symbol browser all variables of the program source file contained in the user
memory of the unit or in the retentive memory.

e All unit variables of the program source file.

e Only if the program source file has been compiled with the "Create program instance data
only once" compiler option: The programs of the program source file and below their
static variables (including instances of function blocks).

Variables in the user memory of the task

You can use the symbol browser to monitor the variables contained in the user memory of
the associated task, see Memory ranges of the variable types (Page 194):

If the program source (unit) was compiled without the compiler option (Page 44) "Create
program instance data only once" (default), the user memory of the task to which the
program was assigned contains the following variables:

e Static variables of the programs.

e Static variables of the function blocks whose instances are declared as static variables of
programs.

Follow these steps:

1. In the project navigator of SIMOTION SCOUT, select the EXECUTION SYSTEM element
in the subtree of the SIMOTION device.

2. In the detail view, click the Symbol browser tab.

The symbol browser shows all tasks used in the execution system together with the
assigned programs. The associated variables contained in the user memory of the task are
listed below.

Note

You can monitor temporary variables (together with unit variables and static variables) with
Program status (see Properties of the program status (Page 265)).

System variables and global device variables
You can also monitor the following variables in the symbol browser:
e System variables of SIMOTION devices
e System variables of technology objects
® |/O variables
® Global device variables
Follow these steps:
1. Select the appropriate element in the SIMOTION SCOUT project navigator.
2. In the detail view, click the Symbol browser tab.

SIMOTION ST Structured Text
258 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

The corresponding variables are displayed in the symbol browser.

B SIMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]

Project 5T source file Edit Insert Target system View Options window Help ===
| Dl= e] L le|@] o] x| o) x| || %] -l |0 | <] | 2] B
[@]0n]w]|] & i)]| s |fooms =1 || 21|/]

. 4 output¥ar @ BYTE := 1; // auxiliary tag ;I
E-<-E 240 -~ 5 END_ VAR
----- EXECUTION SY¥STEM & PROGRAM Flash:
S 1O 7 END_INTERFACE
[B GLOBAL DEVICE WARIABLE 5 -
-] AXES 3 IMPLEMENTATION
I:I---_\| EXTERMAL ENCODERS 10 % PRAGELM Flash
I:|"'—\| PATH OBJECTS 11 — IF counterVar »= 500 THEM // in ewvery 500th pass
I:|"'—\| CAMS 1z %QB62 = outputWar: A set output byte
-] TECHNOLOGY 13 outputVar := ROL (in := outputVar, n := 1):
= PROGRAMS 14 [{* ¢/ rotate bit in byte
-7 Insert 5T program 15 one digit to the lefr#)
%] Insert MCC unit 16 counterVar := 0; // reset counter
™ Insert DCC charts 7 - END_IF;
i %] Insert LADJFED unit | 18 counter¥ar := countervVar + 1; // increment counter
=B ST 19 -~ END_PROGRAM |
- w Flashi) 2 20 “END_TMPLEMENTATTON -
> | .. L TRD ADTFS I _)I_I LI_I _,I_

Project I Cormmand Iibraryl ST_1 I C24EI|

C240.5T_1: Immediate contral | =

Hame Data type Status value Display format Control value
1 couriteryar IMNT 286 |DEC I
2 outputvar BYTE 00100000 | r

S E—
. Blaims == Symbol browser E Compile/check output IE T arget spstem output I %% Diagriostics overview I
Line 1, column 1 [cPS&11{PROFIELS) [Online mode MUM

Figure 6-1 Displaying the contents of variables using the symbol browser

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 259

Error Sources and Program Debugging
6.2 Program debugging

Status and controlling variables

In the Status value column, the current variable values are displayed and periodically
updated.

You can change the value of one or several variables. Proceed as follows for the variables to
be changed:

1. Enter a value in the Control value column.

2. Activate the checkbox in this column

3. Click the Immediate control button.

The values you entered are written to the selected variables.

NOTICE

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the symbol
browser. There is therefore no guarantee of consistency.

Fix the display of the symbol browser
You can fix the display of the symbol browser for the active object:

® To do so, click the Retain display®*" icon in the right upper corner of the symbol browser.
The displayed symbol changes to ‘¥ .

The variables of this object are still displayed and updated in the symbol browser even if
another object is selected in the project navigator.

e To remove the display, click the ‘¥ icon again. The displayed symbol changes back
to * .

Display invalid floating-point numbers

Invalid floating-point numbers are displayed as follows in the symbol browser (independently
of the SIMOTION device):

Table 6-3 Display invalid floating-point numbers

LED Meaning

1.#QNAN Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number) There is no
-1.#QNAN distinction between signaling NaN (NaNs) and quiet NaN (NaNgq).

1.#INF Bit pattern for + infinity in accordance with IEEE 754

-1.#INF Bit pattern for — infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

SIMOTION ST Structured Text
260 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.3 Monitoring variables in watch table

6.2.3.1 Variables in the watch table

With the symbol browser you see only the variables of an object within the project. With
program status you see only the variables of an ST source file within a freely selectable
monitoring area.

With watch tables, in contrast, you can monitor selected variables from different sources as a
group (e.g. program sources, technology objects, SINAMICS drives - even on different
devices).

You can see the data type of the variables in offline mode. You can view and modify the
value of the variables in online mode.

6.2.3.2 Using watch tables

You can group variables from various program sources, technology objects,
SIMOTION devices, etc. (even on different devices), in a watch table where you can monitor
them together and, if necessary, change them.

Creating a watch table
Procedure for creating a watch table and assigning variables:

1.
2.

7.

In the project navigator, select the Monitor folder.

Select Insert > Watch table to create a watch table, and enter the name of the watch
table. A watch table with this name appears in the Monitor folder.

In the project navigator, click the object from which you want to move variables to the
watch table.

In the symbol browser, select the corresponding variable line by clicking its number in the
left column.

From the context menu, select the item Move variable to watch table and the appropriate
watch table, e.g. Watch table_1.

If you click the watch table, you will see in the detail view of the Watch table tab that the
selected variable is now in the watch table.

Repeat steps 3 to 6 to monitor the variables of various objects.

If you are connected with the target system, you can monitor the variable contents.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 261

Error Sources and Program Debugging
6.2 Program debugging

Status and controlling variables

In the Status value column, the current variable values are displayed and periodically
updated.

You can change the value of one or several variables. Proceed as follows for the variables to
be changed:

1. Enter a value in the Control value column.

2. Activate the checkbox in this column

3. Click the Immediate control button.

The values you entered are written to the selected variables.

NOTICE

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until
the next value is written. The variables are changed from top to bottom in the watch table.
There is therefore no guarantee of consistency.

Fix the display of the watch table
You can fix the display of the active watch table:

® To do so, click the Retain displays- icon in the right upper corner of the Watch table tab in
the detail view. The displayed symbol changes to ¢ .

This watch table is still displayed even if another one is selected in the project navigator.

e To remove the display, click the ‘¥ icon again. The displayed symbol changes back
to* .

Display invalid floating-point numbers

Invalid floating-point numbers are displayed as follows in the watch table (independently of
the SIMOTION device):

Table 6-4 Display invalid floating-point numbers

LED Meaning

1.#QNAN Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number) There is no
-1.#QNAN distinction between signaling NaN (NaNs) and quiet NaN (NaNgq).

1.#INF Bit pattern for + infinity in accordance with IEEE 754

-1.#INF Bit pattern for — infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

SIMOTION ST Structured Text
262 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.4 Program run

6.2.4.1 Program run: Display code location and call path

You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path.

Follow these steps:

1. Click the "Show program run" button on the Program run toolbar.
The "Program run call stack (Page 264)" window opens.

2. Select the desired MotionTask.

3. Click the "Update" button.

The window shows:

® The position in the code being executed (e.g. line of the ST source file) stating the
program source and the POU.

® Recursively positions in the code of other POUs that call the code position being
executed.

The following names are displayed for the SIMOTION RT program source files:

Table 6-5 SIMOTION RT program source files

Name Meaning
taskbind.hid Execution system
stdfunc.pck IEC library
device.pck Device-specific library
fp-name.pck Library of the fp-name technology package,
e.g. cam.pck for the library of the CAM technology package.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 263

Error Sources and Program Debugging

6.2 Program debugging

6.2.4.2 Parameter call stack program run
You can display the following for all configured tasks:
e the current code position in the program code (e.g. line of an ST source file)

e the call path of this code position

Table 6-6 Parameter description call stack program run

Field Description
Selected CPU The selected SIMOTION device is displayed.
Refresh Clicking the button reads the current code positions from the

SIMOTION device and shows them in the open window.

Calling task Select the task for which you want to determine the code position
being executed.

All configured tasks of the execution system.

Current code position The position being executed in the program code (e.g. line of an ST
source file) is displayed (with the name of the program source file,
line number, name of the POU).

is called by The code positions that call the code position being executed within
the selected task are shown recursively (with the name of the
program source file, line number, name of the POU, and name of the
function block instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in "Program
run (Page 263)".

6.2.4.3 Program run toolbar

You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path with this toolbar.

Table 6-7 Program run toolbar

Symbol Meaning
EI Display program run

Click this button to open the Program run call stack window. In this window, you can
display the currently active code position with its call path.

See: Program run: Display code position and call path (Page 263)

SIMOTION ST Structured Text
264 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.5 Program status

6.2.5.1 Properties of the program status

Status program enables monitoring the variable values accurately to the cycle during
program execution.

You can select a monitoring area in the ST source file and monitor, in addition to global and
static local variables, also temporary local variables (e.g. within a function) there.

The values of the following variables are displayed:

e Simple data type variables (INT, REAL, etc.)

e |ndividual elements of a structure, provided an assignment is made
e |ndividual elements of an array, provided an assignment is made

® Enumeration data type variables

While the selected monitoring range is running in the ST source file, the corresponding buffer
for the variables to be monitored is filled with the corresponding values on the

SIMOTION device. Once the selected monitoring range has been run, the buffer is formatted
for display in the SIMOTION SCOUT. SIMOTION SCOUT calls the formatted values at
regular intervals and displays them.

As of SIMOTION Kernel V3.2, you can select a location in an ST source file at which a
function or instance of a function block is called (call path). This enables you to observe the
variable values specifically for this call.

Note

Due to the restricted buffer capacity and the requirement for minimum runtime tampering, the
following variables cannot be displayed:

e Complete arrays

e Complete structures

Individual array elements or individual structure elements are displayed, however, provided
an assignment is made in the ST source file.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 265

Error Sources and Program Debugging

6.2 Program debugging

Table 6-8 Differences between process mode and test mode in Program Status

Process mode

Test mode

Optimization of program execution

For maximum system performance, only
restricted diagnosis is possible

For full diagnosis options

Maximum number of monitored
program sources (e.g. ST source
files, MCC source files, LAD/FBD
sources)

e As of version V4.0 of the SIMOTION
kernel:

Maximum 1 program source per task

e Up to version V3.2 of the SIMOTION
kernel:

Maximum 1 program source

e As of version V4.0 of the SIMOTION
kernel:

Multiple program sources per task

e Up to version V3.2 of the SIMOTION
kernel:

Maximum 1 program source per task

Loops (e.g. WHILE, REPEAT,
FOR)

On repeat loops, the recording is
interrupted.

If the whole loop is selected, the values
are displayed on the first run of the loop.

If there are repeats, the recording
continues correctly.

If the whole loop is selected, the values
are displayed on the last run of the loop.

System functions that contain
internal loops (e.g. functions for
processing strings)

Values are not displayed in some cases

Values are displayed correctly.

NOTICE

program:

tasks.

Program status requires additional CPU resources.

Please note if you want to monitor several programs at the same time with the status

e Test mode must be activated (see Operating modes of the SIMOTION
devices (Page 252))

e Up to version V4.0 of the SIMOTION Kernel, the programs must be assigned to various

6.2.5.2 Using the status program

Before you can work with the Status program, you must instruct the system to run in a

special mode:

1. Make sure that the ST source file generates the additional debug code during

compilation:

— Select the ST source file in the project navigator and select the Edit > Object
properties menu command.

— Select the Compiler tab to change the local settings of the compiler (Page 46).

— Make sure that the Enable Status program checkbox is activated and confirm with OK.

You can also change this compiler option at global settings of the compiler (Page 45).

2. Open the ST source file and recompile it with ST source file > Accept and compile.

3. Download and start the program in the usual way.

266

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

4. Click the ﬁl button for program status in the ST editor toolbar (Page 43) to start this test
mode.

The ST editor window is now divided vertically: You can see the ST source file in the left
pane; the right pane displays the selected variables and their values.

BV STMOTION SCOUT - proj_eng - [ST - [C240.5T_1]]
Projeck ST source file Edit Insert Target syskem View Options window Help _|ﬁ||ﬂ

R = L e M e e A [T T e e e s =3

[10 o o |r) | Em|emled | sl [aome 1 %] =) 2l

: 4 outputVar @ BYIE := ﬂ
[=l-<f={EH 240 -] 5 END VAR
----- il] ExECUTION SYSTEM & PROGRAM Flash:
-8 1O 7 END_INTERFACE
- [E= GLOBAL DEVICE WARIABLE 5
-] ARES a INPLEMENTATION
(-] EXTERNAL ENCODERS 10 PROGRAM Flash
[]'--_‘| PATH OBIECTS 11] counterwar = &
- CAMS 1z $0BEZ = »Z#10000000 ;outputwar = ?2#1
[-_] TECHMOLOGY 13 outputvar = 2#00000001 ;outputwar =
=0 PROGRAMS 14
.-® Insert ST program 15
P_'| Insert MCC unit 16 counterwvar = 0
B Insert DCC charts 17
’|_'I Insert LAD/FED unit | 15 i countervar = 85 ;ocountervar = 54
EeeB ST 19 - END_PROGRAM |
PR Flashi) <l llz0 “Enp_ImPLEMENTATION -
Ial... ITRD ADTES
q | _.|_| [« 2 4] | D
Project | Command library | sT_1 | @ coan |
=
Level | Meszage :I
Information C240: ST_1: Information 20471 Transfer of the source successful
Infarmation C240: Determination of the charts to be loaded. ..
Information C240: Sources have been changed successfully.
Information C240: Downloading licenze data...
Information C240: Download completed =
4| | 3
. Alarmnz I == Symbol broveser IE Compile/check output E Target spstem output | %% Diagrostics overvisw I
Line 19, calumn 1 |CPSB11(PROFIELS) [Online mode LM

Figure 6-2 Part of an ST program in program status test mode

Follow the procedure below to test with program status:
1. In the editor, select the section of the ST source file you want to test.
2. As of version V3.2 of the SIMOTION Kernel:

If you have selected a section of a POU that is called by several positions in a program
source file or several tasks:

Enter the call path for program status (Page 268).

For the selected section, you can see variables and their values in the right pane of your
screen; they are updated cyclically:

® Values that have changed in the current pass are displayed in red.

® Values that have not changed are displayed in black.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 267

Error Sources and Program Debugging

6.2 Program debugging

® Variables without values, e.g. variables in an unused IF branch are shown in green and
marked with a question mark.

If the display of the variable values changes too fast:

e (Click the _| button for Stop monitoring of program variables in the ST editor
toolbar (Page 43) to stop the display.

o (Click the Ll button for Continue monitoring of program variables in the ST editor
toolbar (Page 43) to continue the display.

You can force the update of the displayed values:
e C(Click the ﬂ button for Update on the ST editor toolbar (Page 43).

The buffer of the SIMOTION device is read, even if the selected monitoring range has not
yet been completely processed and the values are incomplete. This can be useful, for
example, if the program is waiting for a WAITFORCONDITION statement.

The monitoring of the program variables must have been activated.

6.2.5.3 Call path for program status

With SIMOTION Kernel V3.2 and higher, you can specify the call path when monitoring
variable values of functions and function blocks. This enables you to observe the variable
values specifically for this call.

For this purpose, the Call path window automatically opens in the following cases:
® You have selected a section of a function:

The function is called at various points in the program source files (e.g. ST source files) of
the SIMOTION device.

® You have selected a section of a function block:

There are several instances of the function block or the instance is called at various
points in the program source files (e.g. ST source files) of the SIMOTION device.

® You have selected a section of a program:

The program is assigned to more than one task.

SIMOTION ST Structured Text
268 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

How to select the call path:

In the Call path status program window, the marked section of the POU (code position) is
displayed (with the name of the ST source file, line number, name of the POU).

1. If the code position is called in several tasks:
— Select the task.

2. Select the code position to be called (in the calling POU).
You can select from the following:

— The code positions to be called within the selected task (with the name of the program
source, line number, name of the POU).

If the selected calling code position is in turn called by several code positions, further
lines are displayed in which you proceed similarly.

- Al

All displayed code positions are selected. Moreover, all code positions (up to the top
level of the hierarchy) are selected from which the displayed code positions are called.

Program Status for devices with SIMOTION kernel versions up to V3.1

NOTICE

Note the following if you use Program Status in devices with SIMOTION kernels up to V3.1:

¢ If the project was compiled using SIMOTION SCOUT up to version V3.1, the call path is
not available in the described format. You can only use the diagnosis functions available
at the time of compilation.

¢ You can only specify the call path if the project was compiled using SIMOTION SCOUT
version V3.2 or higher.

When performing a recompilation with the current version of the compiler, note the

following:

e Among other effects, this generates new version identifiers in the data storage areas of
the programs.

¢ All retentive and non-retentive data on the SIMOTION device is deleted and initialized.

¢ In some cases, minor changes to the program sources may be required.

e When converting back to the old project status, the project must be recompiled.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 269

Error Sources and Program Debugging
6.2 Program debugging

6.2.5.4 Parameter call path status program

Table 6-9 Program status call path parameter description

Field Description

Calling task Select the task.

All tasks in which the selected code position is called are available
for selection.

Current code position The selected section of the POU (code position) is shown (with the
name of the ST source file, line number, name of the POU)

is called by Select the calling code position.

The following are available:

e The code positions to be called within the selected task (with the
name of the program source, line number, name of the POU).

If the selected calling code position is in turn called by several
code positions, further lines are displayed in which you proceed
similarly.

o Al

All displayed code positions are selected. Moreover, all code
positions (up to the top level of the hierarchy) are selected from
which the displayed code positions are called.

SIMOTION ST Structured Text
270 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.6 Breakpoints

6.2.6.1 General procedure for setting breakpoints

You can set breakpoints within a POU of a program source (e.g. ST source, MCC chart,
LAD/FBD source). On reaching an activated breakpoint, the task in which the POU with the
breakpoint is called is stopped. If the breakpoint that initiated the stopping of the tasks is
located in a program or function block, the values of the static variables for this POU are
displayed in the "Variables status" tab of the detail display. Temporary variables (also in/out
parameters for function blocks) are not displayed. You can monitor static variables of other
POUs or unit variables in the symbol browser.

Requirement:

® The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

Proceed as follows

open.

Follow these steps:

1.

o 0N

Select "Debug mode" for the associated SIMOTION device,
see Set debug mode (Page 271).

Specify the debug task group, see Specifying the debug task group (Page 273).
Set breakpoints, see Setting breakpoints (Page 276).

Define the call path, see Defining a call path for a single breakpoint (Page 279).
Activate the breakpoints, see Activating breakpoints (Page 285).

6.2.6.2 Setting the debug mode

/I\WARNING

You must observe the appropriate safety regulations.

Use the debug mode only with activated life-sign monitoring (Page 254) with a suitably
short monitoring time! Otherwise, if problems occur in the communication link between the
PC and the SIMOTION device, the axis may start moving in an uncontrollable manner.

The function is released exclusively for commissioning, diagnostic and service purposes.
The function should generally only be used by authorized technicians. The safety
shutdowns of the higher-level control have no effect!

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 271

Error Sources and Program Debugging

6.2 Program debugging

To set the debug mode, proceed as follows:

1. Highlight the SIMOTION device in the project navigator.
Select Test mode from the context menu.

Select Debugmode (Page 252).

Accept the safety information

o > on

Parameterize the sign-of-life monitoring.
See also section: Important information about the life-sign monitoring (Page 254).
6. Confirm with OK.

If no connection has been established with the target system (offline mode), the online
mode will be established automatically.

The activated debug mode is indicated in the status bar.

The breakpoints toolbar (Page 278) is displayed.

Note
You cannot change the program sources in debug mode!

NOTICE

Pressing the spacebar or switching to a different Windows application causes in debug
mode for activated breakpoints:

e The SIMOTION device switches to STOP mode.
e The outputs are deactivated (ODIS).

AWARN ING

This function is not guaranteed in all operating modes. Therefore, there must be an
EMERGENCY STORP circuit in the hardware. The appropriate measures must be taken by
the user.

SIMOTION ST Structured Text
272 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

6.2.6.3 Define the debug task group

On reaching an activated breakpoint, all tasks that are assigned to the debug task group are
stopped.

Requirement
® The relevant SIMOTION device is in debug mode.

Proceed as follows
How to assign a task to the debug task group:
1. Highlight the relevant SIMOTION device in the project navigator.
2. Select Debug task group from the context menu.
The Debug Task group window opens.
3. Select the tasks to be stopped on reaching the breakpoint:

— If you only want to stop individual tasks (in RUN mode): Activate the Debug task group
selection option.

Assign all tasks to be stopped on reaching a breakpoint to the Tasks to be stopped
list.

— If you only want to stop individual tasks (in HALT mode): Activate the All tasks
selection option.

In this case, also select whether the outputs and technology objects are to be released
again after resumption of program execution.

NOTICE

Note the different behavior when an activated breakpoint is reached, see the following
table.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 273

Error Sources and Program Debugging

6.2 Program debugging

Table 6-10 Behavior at the breakpoint depending on the tasks to be stopped in the debug task group.

Properties Tasks to be stopped
Single selected tasks All tasks
(debug task group)
Behavior on reaching the breakpoint
Operating mode RUN STOP
Stopped tasks Only tasks in the debug task group All tasks
Outputs Active Deactivated (ODIS activated)
Technology Closed-loop control active No closed-loop control (ODIS activated)
Runtime measurement of the | Active for all tasks Deactivated for all tasks
tasks
Time monitoring of the tasks Deactivated for tasks in the debug task Deactivated for all tasks
group
Real-time clock Continues to run Continues to run

Behavior on resumption of program execution

Operating mode RUN RUN

Started tasks All tasks in the debug task group All tasks

Outputs Active The behavior of the outputs and the
Technology Closed-loop control active technology objects depends on the

'Continue’ activates the outputs (ODIS
deactivated) checkbox.

e Active: ODIS will be deactivated. All
outputs and technology objects are
released.

¢ Inactive: ODIS remains activated. All
outputs and technology objects are
only released after another download
of the project.

Note
You can only make changes to the debug task group if no breakpoints are active.

Proceed as follows:
1. Set breakpoints (see Setting breakpoints (Page 276)).
2. Define the call path (see Defining a call path for a single breakpoint (Page 279)).
3. Activate the breakpoints (see Activating breakpoints (Page 285)).

SIMOTION ST Structured Text
274 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2.6.4 Debug task group parameters

6.2 Program debugging

Use this window to define the debug task group. On reaching an activated breakpoint, all
tasks that are assigned to the debug task group are stopped.

This requires that the relevant SIMOTION device is in debug mode, see Modes of the
SIMOTION devices (Page 252).

Table 6-11 Debug settings parameter description

Field

Description

Debug task group

Select this selection option if you only want to stop individual tasks.
The SIMOTION device remains in RUN mode after an activated
breakpoint is reached. Outputs and technology objects remain
activated.

Assign all tasks to be stopped on reaching a breakpoint to the Tasks
to be stopped list.

All tasks

Select this selection option if you only want to stop all user tasks.
The SIMOTION device remains in STOP mode after an activated
breakpoint is reached, all outputs and technology objects will be
deactivated (ODIS activated).

In this case, also select whether the outputs and technology objects
are to be released again after resumption of program execution.

'Resume' activates the outputs
(ODIS deactivated).

Only if All tasks is selected.

Activate the checkbox, to release again the outputs and technology
objects after program execution has been resumed.

All outputs and technology objects can only be released after a
download of the project with deactivated checkbox.

NOTICE

Note the different behavior at the activated breakpoint depending on the tasks to be
stopped, see table in Define the debug task group (Page 273).

You can only make changes to the debug task group if no breakpoints are active.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

275

Error Sources and Program Debugging

6.2 Program debugging

6.2.6.5 Debug table parameter

The debug table shows all debug points (e.g. breakpoints, trace points) in the program
sources of a SIMOTION device.

Table 6-12 Debug table parameter description

Field | Description
Debug points (table)
Active The activation state of the breakpoint is displayed.

Click the checkbox to change the activation state.
See: Activating breakpoints (Page 285).

Source, line (POU)

The code position is shown with the debug point set (with the name of
the program source file, line number, name of the POU).

Debug type

The type of the debug point is shown (e.g. breakpoint, trace point).

Call path

Click the button to define the call path for the breakpoint.
See: Defining the call path for a single breakpoint (Page 279).

All breakpoints ...

Activate

Click the button to activate all breakpoints (in all program sources) of the
SIMOTION device.

See: Activating breakpoints (Page 285).

Deactivate

Click the button to deactivate all breakpoints (in all program sources) of
the SIMOTION device.

See: Activating breakpoints (Page 285).

Delete

Click the button to clear all breakpoints (in all program sources) of the
SIMOTION device.

See: Setting breakpoints (Page 276).

6.2.6.6 Setting breakpoints

Requirements:

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 271).

3. The debug task group is defined, see Defining the debug task group (Page 273).

276

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

Proceed as follows
How to set a breakpoint:
1. Select the code location where no breakpoint has been set:

— SIMOTION ST: Place the cursor on a line in the ST source file that contains a
statement.

— SIMOTION MCC: Select an MCC command in the MCC chart (except module or
comment block).

— SIMOTION LAD/FBD: Set the cursor in a network of the LAD/FBD program.
2. Alternative:
— Select the Edit > Set breakpoint menu command.
— Click the il button in the Breakpoints toolbar.
To remove a breakpoint, proceed as follows:
1. Select the code position with the breakpoint.
2. Alternative:
— Select the Edit > Set breakpoint menu command.
— Click the il button in the Breakpoints toolbar.

To remove all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Remove all breakpoints menu command.
— Click the gl button in the Breakpoints toolbar.

Note

You cannot set breakpoints:

e For SIMOTION ST: In lines that contain only comment.

e For SIMOTION MCC: On the module or comment block commands.

e For SIMOTION LAD/FBD: Within a network.

e At code locations in which other debug points (e.g. trigger points) have been set.
You can list the debug points in all program sources of the SIMOTION device in the debug
table:

o Click the button for "debug table" in the Breakpoints toolbar.

In the debug table, you can also remove all breakpoints (in all program sources) of the
SIMOTION device:

o Click the button for "Clear all breakpoints".

Set breakpoints remain saved also after leaving the "debug mode", they are displayed only
in debug mode.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 277

Error Sources and Program Debugging

6.2 Program debugging

You can use the program status (Page 266) diagnosis functions and breakpoints together in
a program source file or POU. However, the following restrictions apply depending on the
program languages:

e SIMOTION ST: For Version V3.2 of the SIMOTION Kernel, the (marked) ST source file
lines to be tested with program status must not contain a breakpoint.

e SIMOTION MCC and LAD/FBD: The commands of the MCC chart (or networks of the
LAD/FBD program) to be tested with program status must not contain a breakpoint.

Proceed as follows

1. Define the call path, see Defining a call path for a single breakpoint (Page 279).

2. Activate the breakpoints, see Activating breakpoints (Page 285).

6.2.6.7 Breakpoints toolbar

This toolbar contains important operator actions for setting and activating breakpoints:

Table 6-13

Breakpoints toolbar

Symbol

Meaning

E

Set/remove breakpoint

Click this icon to set at breakpoint for the selected code position or to remove an
existing breakpoint.

See: Setting breakpoints (Page 276).

=

Activate/deactivate breakpoint
Click this icon to activate or deactivate the breakpoint at the selected code position.
See: Activating breakpoints (Page 285).

Edit the call path
Click this icon to define the call path for the breakpoints:
« |f a code position with breakpoint is selected: The call path for this breakpoint.

o |f a code position without breakpoint is selected: The call path for all breakpoints
of the POU.

See: Defining the call path for a single breakpoint (Page 279), Defining the call path
for all breakpoints (Page 282).

Activate all breakpoints

Click this icon to activate all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).

See: Activating breakpoints (Page 285).

Deactivate all breakpoints

Click this icon to deactivate all breakpoints in the current program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).

See: Activating breakpoints (Page 285).

Remove all breakpoints

Click this icon to remove all breakpoints in the current program source or POU (e.g.
ST source file, MCC chart, LAD/FBD program).

See: Setting breakpoints (Page 276).

278

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

Symbol Meaning

Debug table
Click this icon to display the debug table.

See: Debug table parameters (Page 276).

El Display call stack

Click this icon after reaching an activated breakpoint to:
o View the call path at the current breakpoint.

e View the code positions at which the other tasks of the debug task group have
been stopped together with their call path.

See: Displaying the call stack (Page 287).

:l Resume
Click this icon to continue the program execution after reaching an activated
breakpoint.

See: Activating breakpoints (Page 285), Displaying the call stack (Page 287).

6.2.6.8 Defining the call path for a single breakpoint

Requirements:

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 271).

3. The debug task group is defined, see Defining the debug task group (Page 273).
4. Breakpoint is set, see Setting breakpoints (Page 276).

Proceed as follows
To define the call path for a single breakpoint, proceed as follows:
1. Select the code location where a breakpoint has already been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

2. Click the ﬁl button for "edit call path" in the Breakpoints toolbar.

In the Call path / task selection breakpoint window, the marked code position is displayed
(with the name of the program source file, line number, name of the POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when the selected breakpoint is reached.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 279

Error Sources and Program Debugging

6.2 Program debugging

The following are available:
— All calling locations starting at this call level

The user program will always be started when the activated breakpoint in any task of
the debug task group is reached.

— The individual tasks from which the selected breakpoint can be reached.

The user program will be stopped only when the breakpoint in the selected task is
reached. The task must be in the debug task group.

The specification of a call path is possible.

4. Only for functions and function blocks: Select the call path, i.e. the code position to be
called (in the calling POU).

The following are available:
— All calling locations starting at this call level

No call path is specified. The user program is always stopped at the activated
breakpoint if the POU in the selected tasks is called.

— Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).

The call path is specified. The user program will be stopped at the activated
breakpoint only when the POU is called from the selected code position.

If the POU of the selected calling code position is also called from other code
positions, further lines are displayed successively in which you proceed similarly.

5. If the breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

Note

You can also define the call path to the individual breakpoints in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.
The "Debug table" window opens.
2. Click the appropriate button in the "Call path" column.
3. Proceed in the same way as described above:
— Specify the task.
— Define the call path (only for functions and function blocks).
— Specify the number of passes after which the breakpoint is to be activated.

SIMOTION ST Structured Text
280 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

Proceed as follows:

® Activate the breakpoints, see Activating breakpoints (Page 285).

Note

You can use the "Display call stack (Page 287)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for all breakpoints (Page 282)

6.2.6.9 Breakpoint call path / task selection parameters

Table 6-14 Breakpoint call path / task selection parameter description

Field Description
Selected CPU The selected SIMOTION device is displayed.
Calling task Select the task in which the user program (i.e. all tasks in the debug

task group) will be stopped when the selected breakpoint is reached.
The following are available:
¢ All calling locations starting at this call level

The user program will always be started when the activated
breakpoint in any task of the debug task group is reached.

e The individual tasks from which the POU with the selected
breakpoint can be reached.

The user program will be stopped only when the breakpoint in
the selected task is reached. The task must be in the debug task

group.
The specification of a call path is possible.
Current code position The code position is shown with the set breakpoint (with the name of

the program source file, line number, name of the POU).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 281

Error Sources and Program Debugging

6.2 Program debugging
Field Description
is called by Only for functions and function blocks:

Select the call path, i.e. the code position to be called (in the calling

POU).

The following are available:

¢ All calling locations starting at this call level
No call path is specified. The user program will always be
stopped at the activated breakpoint when the POU in the tasks is
reached.

e Only when a single task is selected: The code positions to be
called within the selected task (with the name of the program
source, line number, name of the POU).

The call path is specified. The user program will be stopped at
the activated breakpoint only when the POU is called from the
selected code position.
If the POU of the selected calling code position is also called
from other code positions, further lines are displayed
successively in which you proceed similarly.

The breakpoint will be If you do not want the breakpoint to be activated until the code

activated at each nth pass. position has been reached a certain number of times, set this

number.
NOTICE
You can only make changes to the debug task group if no breakpoints are active.

6.2.6.10 Defining the call path for all breakpoints
With this procedure, you can:

® Select a default setting for all future breakpoints in a POU (e.g. MCC chart, LAD/FBD
program or POU in an ST source file).

® Accept and compare the call path for all previously set breakpoints in this POU.

Requirements

® The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is
open.

® The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 271).

® The debug task group is defined, see Defining the debug task group (Page 273).

SIMOTION ST Structured Text
282 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

Proceed as follows

6.2 Program debugging

To define the call path for all future breakpoints of a POU, proceed as follows:

1.

Select the code location where no breakpoint has been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

. Click the ﬁl button for "edit call path" in the Breakpoints toolbar.

In the "Call path / task selection all breakpoints for each POU" window, the marked code
position is displayed (with the name of the program source file, line number, name of the
POU).

Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when a breakpoint in this POU is reached.

The following are available:
— All calling locations starting at this call level

The user program will always be started when an activated breakpoint of the POU in
any task of the debug task group is reached.

— The individual tasks from which the selected breakpoint can be reached.

The user program will be stopped only when a breakpoint in the selected task is
reached. The task must be in the debug task group.

The specification of a call path is possible.

. Only for functions and function blocks: Select the call path, i.e. the code position to be

called (in the calling POU).
The following are available:
— All calling locations starting at this call level

No call path is specified. The user program is always stopped at an activated
breakpoint when the POU in the selected tasks is called.

— Only when a single task is selected: The code positions to be called within the
selected task (with the name of the program source, line number, name of the POU).

The call path is specified. The user program will be stopped at an activated breakpoint
only when the POU is called from the selected code position.

If the selected calling code position is in turn called by other code positions, further
lines are displayed successively in which you proceed similarly.

If a breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

If you want to accept and compare this call path for all previously set breakpoints in this
POU:

— Click Accept.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 283

Error Sources and Program Debugging

6.2 Program debugging

Proceed as follows:
® Activate the breakpoints, see Activating breakpoints (Page 285).

Note

You can use the "Display call stack (Page 287)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for a single breakpoint (Page 279)

6.2.6.11 Call path / task selection parameters of all breakpoints per POU

Here you can define a presetting for the call path of all future breakpoints to be set in a POU.
Moreover, you can also accept this setting for all previously set breakpoints of this POU.

Table 6-15 Call path / task selection parameter description of all breakpoints per POU

Field Description
Selected CPU The selected SIMOTION device is displayed.
Calling task Select the task in which the user program (i.e. all tasks in the debug task

group) will be stopped when a breakpoint in this POU is reached.
The following are available:
o All calling locations starting at this call level

The user program will always be started when an activated breakpoint
of the POU in any task of the debug task group is reached.

e The individual tasks from which the selected breakpoint can be
reached.
The user program will be stopped only when an activated breakpoint in
the selected task is reached. The task must be in the debug task
group.
The specification of a call path is possible.
Current POU The POU in which the cursor is located is displayed (with the name of the
program source file, name of the POU).

SIMOTION ST Structured Text
284 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging

6.2 Program debugging

Field

Description

is called by

Only for functions and function blocks:

Select the call path, i.e. the code position to be called (in the calling POU).
The following are available:

¢ All calling locations starting at this call level

No call path is specified. The user program will always be stopped at
an activated breakpoint when the POU in the selected tasks is called.

e Only when a single task is selected: The code positions to be called
within the selected task (with the name of the program source, line
number, name of the POU).

The call path is specified. The user program will be stopped at an
activated breakpoint only when the POU is called from the selected
code position.

If the POU of the selected calling code position is also called from
other code positions, further lines are displayed successively in which
you proceed similarly.

The breakpoint will be
activated at each nth
pass.

If you do not want the breakpoint to be activated until the code position
has been reached a certain number of times, set this number.

Apply this call path to all
previous breakpoints of
this POU

Click the Apply button, if you want to apply the call path to all previously
set breakpoints of the current POU. Any existing settings will be
overwritten.

6.2.6.12 Activating breakpoints

Breakpoints must be activated if they are to have an effect on program execution.

Requirements

1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. The relevant SIMOTION device is in debug mode,
see Setting debug mode (Page 271).

3. The debug task group is defined, see Defining the debug task group (Page 273).

4. Breakpoints are set, see Setting breakpoints (Page 276).

5. Call paths are defined, see Defining a call path for a single breakpoint (Page 279).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

285

Error Sources and Program Debugging

6.2 Program debugging

Activating breakpoints

How to activate a single breakpoint:

1. Select the code location where a breakpoint has already been set:
— SIMOTION ST: Set the cursor in an appropriate line of the ST source.
— SIMOTION MCC: Select an appropriate command in the MCC chart.

— SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD
program.

2. Alternative:
— Select the Debug > Activate/deactivate breakpoint menu command.
— Click the _.I button in the Breakpoints toolbar.

To activate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Activate all breakpoints menu command.
— Click the 3' button in the Breakpoints toolbar.

Note
Breakpoints of all program sources of the SIMOTION device can also be activated and
deactivated in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.
The "Debug table" window opens.

2. Perform the action below, depending on which breakpoints you want to activate or
deactivate:

— Single breakpoints: Check or clear the corresponding checkboxes.
— All breakpoints (in all program sources): Click the corresponding button.

Behavior at the activated breakpoint

286

On reaching an activated breakpoint (possibly using the selected call path (Page 279)), all
tasks assigned to the debug task group will be stopped. The behavior depends on the tasks
in the debug task group and is described in "Defining a debug task group (Page 273)". The
breakpoint is highlighted.

If the breakpoint that initiated the stopping of the tasks is located in a program or function
block, the values of the static variables for this POU are displayed in the "Variables status"
tab of the detail display. Temporary variables (also in/out parameters for function blocks) are
not displayed. You can monitor static variables of other POUs or unit variables in the symbol
browser (Page 257).

You can use the "Display call stack (Page 287)" function to:
® View the call path at the current breakpoint.

® View the code positions with the call path at which the other tasks of the debug task
group have been stopped.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

Resuming program execution
How to resume program execution:

® C(Click the :l button for "resume" (Ctrl+F8 shortcut) in the Breakpoint toolbar.

Deactivate breakpoints
To deactivate a single breakpoint, proceed as follows:
1. Select the code position with the activated breakpoint.
2. Alternative:
— Select the Debug > Activate/deactivate breakpoint menu command.
— Click the _.I button in the Breakpoints toolbar.

To deactivate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

e Alternative:
— Select the Debug > Deactivate all breakpoints menu command.
— Click the ﬂ button in the Breakpoints toolbar.

6.2.6.13 Display call stack
You can use the "Display call stack" function to:
e View the call path at the current breakpoint.

® View the code positions with the call path at which the other tasks of the debug task
group have been stopped.

Requirement

The user program is stopped at an activated breakpoint, i.e. the tasks of the debug task
group (Page 273) have been stopped.

Proceed as follows
To call the "Display call stack" function, proceed as follows:

® C(Click the El button for "display call stack" in the Breakpoints toolbar.

The "Breakpoint call stack" dialog opens. The current call path (including the calling task
and the number of the set passes) is displayed.

The call path cannot be changed.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 287

Error Sources and Program Debugging

6.2 Program debugging

To use the "Display call stack" function, proceed as follows:

1.
2.

3.

4.

Keep the "Breakpoint call stack" dialog open.
To display the code position at which the other task was stopped, proceed as follows:
— Select the appropriate task. All tasks of the debug task group can be selected.

The code position, including the call path, is displayed. If the code position is contained in
a user program, the program source with the POU (e.g. ST source file, MCC chart,
LAD/FBD program) will be opened and the code position marked.

How to resume program execution:
— Click the il button for "resume" (Ctrl+F8 shortcut) in the Breakpoint toolbar.

When the next activated breakpoint is reached, the tasks of the debug task group will be
stopped again. The current call path, including the calling task, is displayed.

Click "OK" to close the "Breakpoint call stack" dialog.

For names of the SIMOTION RT program sources, refer to the table in "Program
run (Page 263)".

6.2.6.14 Breakpoints call stack parameter
When an activated breakpoint (Page 285) is reached, you can display the following for each
task in the debug task group (Page 273):
® The position in the program code (e.g. line of an ST source file) at which the task
stopped.
® The call path of this code position.
Table 6-16 Breakpoint call path parameter description

Field Description

Selected CPU The selected SIMOTION device is displayed.

Calling task Select the task for which you want to display the code position at
which the task was stopped.

All tasks of the debug task group can be selected.

Current code position The position in the program code (e.g. line of an ST source file) at
which the selected task was stopped is displayed (with the name of
the program source file, line number, name of the POU).

is called by The code positions that call the current code position within the
selected task are shown recursively (with the name of the program
source file, line number, name of the POU, and name of the function
block instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in "Program
run (Page 263)".
SIMOTION ST Structured Text
288 Programming and Operating Manual, 08/2008

Error Sources and Program Debugging
6.2 Program debugging

6.2.7 Trace

Using the trace tool, you can record and store the course of variable values over time (z. B.
unit variables, local variables, system variables, 1/O variables). This allows you to document
the optimization, for example, of axes.

You can set the recording time, display up to four channels, select trigger conditions,
parameterize timing adjustments, select between different curve displays and scalings, etc.

Aside from isochronous recording, you can also select Recording at code position. This lets
you record the values of variables whenever the program runs through a specific point in the
ST source file.

The trace tool is described in detail in the online help.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 289

Appendix l \

A.1 Formal Language Description

In this chapter, you will find overviews of the basic elements of ST and a complete
compilation of all syntax diagrams with the language elements. This appendix summarizes
the basic features of the ST language.

A1A1 Language description resources

Syntax diagrams are used as a basis for the language description in the individual sections.

They provide you with an invaluable insight into the syntactic (i.e. grammatical) structure of
ST.

Instructions for using syntax diagrams were presented in Language description resources.
Information about the difference between formatted and unformatted rules, of interest to the
advanced user, is presented below.

A1.11 Formatted rules (lexical rules)

The lexical rules describe the structure of the elements processed by the compiler during
lexical analysis. This means that the notation is formatted and the rules must be followed. In
particular, that means:

® [nsertion of formatting characters is not allowed.
® Block and line comments cannot be inserted.
e Attributes for identifiers cannot be inserted.

The following figure shows a lexical rule for legal identifiers.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 291

Appendix

A. 1 Formal Language Descripfion

292

Identifier (formatted)

Letter

Digit
Underscore

Underscore

Letter

Digit

Letter:A..Z,a..z
Digit: 0 .. 9

Figure A-1 Example of a lexical rule

Valid examples according to this rule include:

R_CONTROLLER3
_A_ARRAY
7100 3 3 10

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A1.1.2 Unformatted rules (syntactic rules)

A. 1 Formal Language Description

The syntactic rules build on the lexical rules and describe the structure of ST. You can write
your ST program unformatted within the framework of these rules.

The unformatted property means:

® Formatting characters can be inserted anywhere.

® Block and line comments can be inserted.

The following example shows the syntactic rule for assigning a value in a statement.

Value assignment (unformatted)

Variable of the
elementary data type

Variable of the
enumerator data type

Array variable

Structured variable

Absolute Pl access

Outputs only

External tag

T T T T

— Access to FB input parameters <1> |—

-

Expression

I_,

—| Direct bit access <1> I—

<1> Only for activated "Permit language extensions" compiler option:

Figure A-2 Example of a syntactic rule

Valid examples according to this rule include:

VARIABLE 1 := 100; SWITCH := FALSE;
//'This is a comment
VARIABLE_Z :=3.2 +VARIABLE 1;

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

293

Appendix

A. 1 Formal Language Descripfion

A1.2

A1.21

A1.2.2

294

Basic elements (terminals)

A terminal is a basic element that is declared verbally and not by a further rule. It is
represented in the syntax diagrams by an oval or circle.

Letters, digits and other characters

Letters and digits are the most commonly used characters. The identifier, for example,

consists of a combination of letters, digits, and the underscore. The underscore is one of the
special characters.

Table A-1 Letters and digits

Characters Subgroup Character set elements
Letter Upper case A.Z
Lower case a.z
Digit Decimal digit 0..9
Octal digit Octal digit 0.7
Hexadecimal digit Hexadecimal digit 0.9 A.Fa.f
Bit Binary digit 0,1

You can use the complete extended ASCII character set in comments. You can use all
printable ASCII code characters starting from decimal equivalent 32 (blank).

For language commands, identifiers, constants, expressions and operators, you can use
special characters, i.e. characters other than letters and digits, only according to certain
rules.

Formatting characters and separators in the rules

Formatting characters and separators are used differently in formatted (lexical) and
unformatted (syntactic) rules. Language description resources (Page 291) describes the
differences between syntactic and lexical rules.

In the tables below, you will find the formatting characters and separators of the lexical and
syntactic rules. You are also provided with a description and a list of all rules in which the
formatting characters and separators are used as terminals (see Rules (Page 307)).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Table A-2 Formatting characters and separators in lexical rules
Characters Description Lexical rule
Separator between hours, minutes, Time of day information
and seconds
Separator for floating-point Floating-point representation, time-of-day
representation, time interval information, decimal representation, access
representation, absolute addressing | to local or global instance
_ Separator for identifiers, separator for | Identifiers, decimal digit string, binary digit
Underscore | numerical values in constants string, octal digit string, hexadecimal digit
string, sequence representation
% Prefix for direct identifier on CPU Simple memory access
memory access
1 Comment Line comment
**) Comment Block comment
Table A-3 Formatting characters and separators in syntactic rules
Characters Description Syntactic rule
Separator for type information Function, variable declaration, component
declaration, CASE statement, instance
declaration
; Ends a declaration or statement Constant block, statement, variable
declaration, instance declaration, component
declaration, statement section
s Separator for lists Variable declaration, array initialization list,
instance declaration, ARRAY data type
specification, FB parameter, FC parameter,
value list
Range information Array data type specification, value list
. Structure access Structured variable
() Initialization list for arrays, Array initialization list, expression, simple
parentheses in expressions, function | multiplication, operand, exponent, FB call,
and function block calls function call
[1 Array declaration, structured variable | Array data type specification
section of array

See also

Language description resources (Page 71)

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

295

Appendix

A. 1 Formal Language Descripfion

A1.23 Formatting characters and separators for constants
Below, you will find all formatting characters and separators for constants with information on
the lexical rule in which they are used.
Table A-4 Formatting characters and separators for constants
Characters Code for Lexical rule
2# Integer constant Binary digit string
8# Integer constant Octal digit string
16# Integer constant Hexadecimal digit string
E Separator for floating-point constants | Exponent
E Separator for floating-point constants | Exponent
D# Time information Date
DATE# Time information Date
DATE_AND_TIME# Time information Date and time
DT# Time information Date and time
T# Time information Duration
TIME# Time information Duration
TIME_OF_DAY# Time information Time of day
TOD# Time information Time of day
d Separator for time interval (day) Days (rule: Sequence
representation)
h Separator for time interval (hours) Hours
(rule: Sequence representation)
m Separator for time interval (minutes) | Minutes
(rule: Sequence representation)
ms Separator for time interval Milliseconds
(milliseconds) (rule: Sequence representation)
s Separator for time interval (seconds) | Seconds
(rule: Sequence representation)
SIMOTION ST Structured Text
296 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

A1.24 Predefined identifiers for process image access

Below is a list of all predefined variables in ST that you can use to access CPU memory

areas (absolute identifiers). Note that you can read and write outputs but you can only read

inputs.

Table A-5 Absolute identifier

Identifier Description Lexical rule

%In.x CPU input range with byte and bit address Absolute Pl access

or

%1Xn.x

%1Bn CPU input range with byte address Absolute Pl access

%IWn CPU input range with word address Absolute Pl access

%IDn CPU input range with double word address Absolute Pl access

%Qn.x CPU output range with byte and bit address Absolute Pl access

or

%QXn.x

%QBn CPU output range with byte address Absolute Pl access

%QWn CPU output range with word address Absolute Pl access

%QDn CPU output range with double word address Absolute Pl access
A.1.25 Identifiers of the Taskstartinfo

The following identifiers are defined for the Taskstartinfo:

Table A-6 Identifiers of the Taskstartinfo

Identifier Data type Description

TSl#alarmNumber DINT Scan for alarm number
TSl#commandld.high UDINT Scan for commandld (most significant word)
TSl#commandid.low UDINT Scan for commandld (least significant word)
TSl#currentTaskld StructTaskld Scan for Taskld of current task
TSl#cycleTime TIME Scan for configured cycle time of current task
TShidetails DWORD Scan for detailed information
TSlk#executionFaultType UDINT Scan for type of execution error
TSl#interruptid UDINT Scan for triggering event

TSHflogBaseAdrin DINT Scan for logical base address
TSl#logBaseAdrOut DINT Scan for logical base address
TSl#logDiagAddr DINT Scan for logical diagnostic address
TSl#shutDownlnitiator UDINT Scan for cause of transition to STOP
TSl#startTime DT Scan for start time

TSl#taskid StructTaskld Scan for Taskld of triggering task
TSl#tolnst ANYOBJECT Scan for TO instance

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

297

Appendix

A. 1 Formal Language Descripfion

A1.2.6

208

Operators

Below is a list of all ST operators and the syntactic rules in which they are used.

Table A-7 ST operators
Operator Description Rule
= Assignment operator (also Value assignment, input assignment, in/out
for initialization values) assignment, variable declaration, constant
declaration, user-defined data types,
component declaration
+, - Arithmetic operators: Unary | Expression, exponent
operators, sign
+, - %/ Basic arithmetic operators Expression, basic arithmetic operator
MOD
> Arithmetic operators: Expression
Exponent operator
NOT Logic operators: Negation Expression, operand
AND, &, OR, XOR Basic logic operator Basic logic operator
<, >, <=, 5=, = <> Relational operator Relational operator
=> Assignment operator Output assignment

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

A1.27 Reserved words
Below is an alphabetical list of keywords, predefined identifiers, and standard functions of
the basic ST system. You are also provided with a description and the syntactic rule from
rules in which they are used as terminals. An exception is standard functions, which are
included only implicitly in the syntactic rule for function calls as the standard function name.
Note
Variables must not be assigned the names of keywords or predefined identifiers. For more
information about identifiers, see /dentifiers in ST. You will find an overview of the identifiers
reserved for technology objects and other reserved identifiers in Reserved identifiers.

Table A-8 ST keywords and predefined identifiers in the basic ST system

Keyword/identifier Description Rule

ABS Standard numeric function Function call

ACOS Standard numeric function Function call

AND Logic operator Basic logic operator

ANYOBJECT General data type for technology TO data type

objects
ANYOBJECT_TO_OBJECT Standard function for type conversion Function call
(technology objects)
ANYTYPE_TO_BIGBYTEARRAY Standard function (marshalling) Function call
ANYTYPE_TO_LITTLEBYTEARRAY Standard function (marshalling) Function call

ARRAY

Introduces the specification of an array
and is followed by the index list
between [and]

Array data type specification

AS Introduces a namespace -

ASIN Standard numeric function Function call
AT Reserved identifier -

ATAN Standard numeric function Function call
BIGBYTEARRAY_TOANYTYPE Standard function (marshalling) Function call
BOOL Elementary data type for binary data Bit data type
BOOL_TO_BYTE Standard function for type conversion Function call
BOOL_TO_DWORD Standard function for type conversion Function call
BOOL_TO_WORD Standard function for type conversion Function call
BOOL_VALUE_TO_DINT Standard function for type conversion Function call
BOOL_VALUE_TO_INT Standard function for type conversion Function call
BOOL_VALUE_TO_LREAL Standard function for type conversion Function call
BOOL_VALUE_TO_REAL Standard function for type conversion Function call
BOOL_VALUE_TO_SINT Standard function for type conversion Function call
BOOL_VALUE_TO_UDINT Standard function for type conversion Function call
BOOL_VALUE_TO_UINT Standard function for type conversion Function call
BOOL_VALUE_TO_USINT Standard function for type conversion Function call
BY Introduces the increment FOR statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

299

Appendix

A. 1 Formal Language Descripfion

Keyword/identifier Description Rule
BYTE Elementary data type Bit data type
BYTE_TO_BOOL Standard function for type conversion Function call
BYTE_TO_DINT Standard function for type conversion Function call
BYTE_TO_DWORD Standard function for type conversion Function call
BYTE_TO_INT Standard function for type conversion Function call
BYTE_TO_SINT Standard function for type conversion Function call
BYTE_TO_UDINT Standard function for type conversion Function call
BYTE_TO_UINT Standard function for type conversion Function call
BYTE_TO_USINT Standard function for type conversion Function call
BYTE_TO_WORD Standard function for type conversion Function call
BYTE_VALUE_TO_LREAL Standard function for type conversion Function call
BYTE_VALUE_TO_REAL Standard function for type conversion Function call
CASE Introduces a control statement for CASE statement

selection
CONCAT Standard function for string editing Function call
CONCAT_DATE_TOD Standard function for type conversion Function call
CONSTANT Introduces a constant definition Constant block
COS Standard numeric function Function call
CTD Down counter Function block call
CTD_DINT Down counter Function block call
CTD_UDINT Down counter Function block call
CTU Up counter Function block call
CTU_DINT Up counter Function block call
CTU_UDINT Up counter Function block call
CTUD Up/down counter Function block call
CTUD_DINT Up/down counter Function block call
CTUD_UDINT Up/down counter Function block call
DATE Elementary data type for date Time type
DATE_AND_TIME Elementary data type for date and time | DATE_AND_TIME
DATE_AND_TIME_TO_DATE Standard function for type conversion Function call
DATE_AND_TIME_TO_TIME_OF_DAY | Standard function for type conversion Function call
DELETE Standard function for string editing Function call
DINT Elementary data type for double Numeric data type

precision integer with value range -

2**31 to 2**31-1
DINT_TO_BYTE Standard function for type conversion Function call
DINT_TO_DWORD Standard function for type conversion Function call
DINT_TO_INT Standard function for type conversion Function call
DINT_TO_LREAL Standard function for type conversion Function call
DINT_TO_REAL Standard function for type conversion Function call
DINT_TO_SINT Standard function for type conversion Function call
DINT_TO_STRING Standard function for type conversion Function call
DINT_TO_UDINT Standard function for type conversion Function call

300

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Keyword/identifier Description Rule

DINT_TO_UINT Standard function for type conversion Function call
DINT_TO_USINT Standard function for type conversion Function call
DINT_TO_WORD Standard function for type conversion Function call
DINT_VALUE_TO_BOOL Standard function for type conversion Function call

DO Introduces the statement section for FOR statement, WHILE statement
FOR statement or WHILE statement
DT Shorthand notation for DATE_AND_TIME
DATE_AND_TIME
DT_TO_DATE Standard function for type conversion Function call
DT_TO_TOD Standard function for type conversion Function call
DWORD Elementary data type for double word | Bit data type
DWORD_TO_BOOL Standard function for type conversion Function call
DWORD_TO_BYTE Standard function for type conversion Function call
DWORD_TO_DINT Standard function for type conversion Function call
DWORD_TO_INT Standard function for type conversion Function call
DWORD_TO_REAL Standard function for type conversion Function call
DWORD_TO_SINT Standard function for type conversion Function call
DWORD_TO_UDINT Standard function for type conversion Function call
DWORD_TO_UINT Standard function for type conversion Function call
DWORD_TO_USINT Standard function for type conversion Function call
DWORD_TO_WORD Standard function for type conversion Function call
DWORD_VALUE_TO_LREAL Standard function for type conversion Function call
DWORD_VALUE_TO_REAL Standard function for type conversion Function call

ELSE Introduces the clause to be executed if | IF statement, CASE statement
no condition true

ELSIF Introduces alternative condition IF statement

END_CASE Ends the CASE statement CASE statement

END_EXPRESSION Ends the EXPRESSION statement Function

END_FOR Ends the FOR statement FOR statement

END_FUNCTION Ends the function Function

END_FUNCTION_BLOCK

Ends the function block

Function block

END_IF

Ends the IF statement

IF statement

END_IMPLEMENTATION

Ends the implementation section

Implementation section

END_INTERFACE

Ends the interface section

Interface section

END _LABEL Ends the LABEL statement -

END_PROGRAM Ends the program section Program section

END_REPEAT Ends the REPEAT statement REPEAT statement
END_STRUCT Ends the specification of a structure STRUCT data type specification
END_TYPE Ends the UDT User-defined data type
END_VAR Ends a declaration block Temporary variable block, static

variable block, parameter block,
constant block

END_WAITFORCONDITION

Ends the control statement for a task
waiting for a programmable event

WAITFORCONDITION statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

301

Appendix

A. 1 Formal Language Descripfion

Keyword/identifier Description Rule
END_WHILE Ends the WHILE statement WHILE statement
ENUM_TO_DINT Standard function for type conversion Function call
EXIT Direct exit from loop execution EXIT
EXP Standard numeric function Function call
EXPD Standard numeric function Function call
EXPRESSION Programmable event for waiting task Function
EXPT Standard numeric function Function call
F_TRIG Detects falling edge Function block call
FALSE Predefined Boolean constant: Logical |-
condition false, value equal to 0
FIND Standard function for string editing Function call
FOR Introduces control statement for loop FOR statement
execution
FUNCTION Introduces the function Function
FUNCTION_BLOCK Introduces the function block Function block
GOTO Jump -
IF Introduces a control statement for IF statement
selection
IMPLEMENTATION Introduces the IMPLEMENTATION IMPLEMENTATION section
section
INSERT Standard function for string editing Function call
INT Elementary data type for single Numeric data type
precision integer with value range -
2**15 to 2**15-1
INT_TO_BYTE Standard function for type conversion Function call
INT_TO_DINT Standard function for type conversion Function call
INT_TO_DWORD Standard function for type conversion Function call
INT_TO_LREAL Standard function for type conversion Function call
INT_TO_REAL Standard function for type conversion Function call
INT_TO_SINT Standard function for type conversion Function call
INT_TO_TIME Standard function for type conversion Function call
INT_TO_UDINT Standard function for type conversion Function call
INT_TO_UINT Standard function for type conversion Function call
INT_TO_USINT Standard function for type conversion Function call
INT_TO_WORD Standard function for type conversion Function call
INT_VALUE_TO_BOOL Standard function for type conversion Function call
INTERFACE Introduces the interface section Interface section
LABEL Definition of jump labels -
LEFT Standard function for string editing Function call
LEN Standard function for string editing Function call
LIMIT Standard function for selection Function call
LITTLEBYTEARRAY_TOANYTYPE Standard function (marshalling) Function call
LN Standard numeric function Function call
LOG Standard numeric function Function call
SIMOTION ST Structured Text
302 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Keyword/identifier

Description

Rule

LREAL

Elementary data type for 64-bit double-
precision floating-point number (long
real)

Numeric data type

LREAL_TO_DINT Standard function for type conversion Function call
LREAL_TO_INT Standard function for type conversion Function call
LREAL_TO_REAL Standard function for type conversion Function call
LREAL_TO_SINT Standard function for type conversion Function call
LREAL_TO_STRING Standard function for type conversion Function call
LREAL_TO_UDINT Standard function for type conversion Function call
LREAL_TO_UINT Standard function for type conversion Function call
LREAL_TO_USINT Standard function for type conversion Function call
LREAL_VALUE_TO_BOOL Standard function for type conversion Function call
LREAL_VALUE_TO_BYTE Standard function for type conversion Function call
LREAL_VALUE_TO_DWORD Standard function for type conversion Function call
LREAL_VALUE_TO_WORD Standard function for type conversion Function call
MAX Standard function for selection Function call
MID Standard function for string editing Function call
MIN Standard function for selection Function call
MOD Arithmetic operator for division Basic arithmetic operator, simple
remainder multiplication
MUX Standard function for selection Function call
NOT Logic operator, belongs to the unary Expression, operand
operators
OF Introduces data type specification Array data type specification, CASE
statement
OR Logic operator Basic logic operator
PROGRAM Introduces the PROGRAM section Program
R_TRIG Detects rising edge Function block call
REAL Elementary data type for 32-bit single Numeric data type
precision floating-point number (real)
REAL_TO_DINT Standard function for type conversion Function call
REAL_TO_DWORD Standard function for type conversion Function call
REAL_TO_INT Standard function for type conversion Function call
REAL_TO_LREAL Standard function for type conversion Function call
REAL_TO_SINT Standard function for type conversion Function call
REAL_TO_STRING Standard function for type conversion Function call
REAL_TO_TIME Standard function for type conversion Function call
REAL_TO_UDINT Standard function for type conversion Function call
REAL_TO_UINT Standard function for type conversion Function call
REAL_TO_USINT Standard function for type conversion Function call
REAL_VALUE_TO_BOOL Standard function for type conversion Function call
REAL_VALUE_TO_BYTE Standard function for type conversion Function call
REAL_VALUE_TO_DWORD Standard function for type conversion Function call
REAL_VALUE_TO_WORD Standard function for type conversion Function call

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

303

Appendix

A. 1 Formal Language Descripfion

Keyword/identifier Description Rule

REPEAT Introduces control statement for loop REPEAT statement
execution

REPLACE Standard function for string editing Function call

RETAIN Declaration of buffered variables Retentive variable block

RETURN Control statement for returning from RETURN statement
subroutine

RIGHT Standard function for string editing Function call

ROL Bit string standard functions Function call

ROR Bit string standard functions Function call

RS Bistable function block Function block calll
(priority reset)

RTC Real-time clock Function block call

SEL Standard function for selection Function call

SHL Bit string standard functions Function call

SHR Bit string standard functions Function call

SIN Standard numeric function Function call

SINT Elementary data type for short integer | Numeric data type
with value range -128 to 127

SINT_TO_BYTE Standard function for type conversion Function call

SINT_TO_DINT Standard function for type conversion Function call

SINT_TO_DWORD Standard function for type conversion Function call

SINT_TOL_INT Standard function for type conversion Function call

SINT_TO_LREAL Standard function for type conversion Function call

SINT_TO_REAL Standard function for type conversion Function call

SINT_TO_UDINT Standard function for type conversion Function call

SINT_TO_UINT Standard function for type conversion Function call

SINT_TO_USINT Standard function for type conversion Function call

SINT_TO_WORD Standard function for type conversion Function call

SINT_VALUE_TO_BOOL Standard function for type conversion Function call

SQRT Standard numeric function Function call

SR Bistable function block Function block call
(priority set)

STRING Elementary data type for character String data type
strings

STRING_TO_DINT Standard function for type conversion Function call

STRING_TO_LREAL Standard function for type conversion Function call

STRING_TO_REAL Standard function for type conversion Function call

STRING_TO_UDINT Standard function for type conversion Function call

STRUCT

Introduces the specification of a
structure and is followed by a list of
components

STRUCT data type specification

StructAlarmld

Data type for Alarmlid

StructAlarmld_TO_DINT Standard function for type conversion Function call
StructTaskld Data type for Taskld -
SIMOTION ST Structured Text
304 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Keyword/identifier Description Rule
TAN Standard numeric function Function call
THEN Introduces subsequent actions if IF statement
condition true
TIME Elementary data type for time Time type
information
TIME_OF_DAY Elementary data type for time of day Time type
TIME_TO_INT Standard function for type conversion Function call
TIME_TO_REAL Standard function for type conversion Function call
TO Introduces end value FOR statement
TOD Shorthand notation for TIME_OF_DAY | Time type
TOF OFF delay Function block call
TON ON delay Function block call
TP Pulse Function block call
TRUE Predefined Boolean constant: Logical |-
condition true, value not equal to 0
TRUNC Standard numeric function Function call
TYPE Introduces UDT User-defined data type
UDINT Elementary data type for unsigned Numeric data type

double precision integer with value
range 0 to 2**32-1

UDINT_TO_BYTE Standard function for type conversion Function call
UDINT_TO_DINT Standard function for type conversion Function call
UDINT_TO_DWORD Standard function for type conversion Function call
UDINT_TO_INT Standard function for type conversion Function call
UDINT_TO_LREAL Standard function for type conversion Function call
UDINT_TO_REAL Standard function for type conversion Function call
UDINT_TO_SINT Standard function for type conversion Function call
UDINT_TO_STRING Standard function for type conversion Function call
UDINT_TO_UINT Standard function for type conversion Function call
UDINT_TO_USINT Standard function for type conversion Function call
UDINT_TO_WORD Standard function for type conversion Function call
UDINT_VALUE_TO_BOOL Standard function for type conversion Function call

UINT Elementary data type for unsigned Numeric data type
single precision integer with value
range 0 to 2**16-1
UINT_TO_BYTE Standard function for type conversion Function call
UINT_TO_DINT Standard function for type conversion Function call
UINT_TO_DWORD Standard function for type conversion Function call
UINT_TO_INT Standard function for type conversion Function call
UINT_TO_LREAL Standard function for type conversion Function call
UINT_TO_REAL Standard function for type conversion Function call
UINT_TO_SINT Standard function for type conversion Function call
UINT_TO_UDINT Standard function for type conversion Function call
UINT_TO_USINT Standard function for type conversion Function call

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

305

Appendix

A. 1 Formal Language Descripfion

Keyword/identifier Description Rule
UINT_TO_WORD Standard function for type conversion Function call
UINT_VALUE_TO_BOOL Standard function for type conversion Function call
UNIT Introduces the UNIT section Unit section
UNTIL Introduces exit condition for REPEAT REPEAT statement
statement
USELIB Introduces the library name -
USEPACKAGE Introduces the package name -
USES Introduces a reference to other units -
USINT Elementary data type for unsigned Numeric data type
short integer with value range 0 to 255
USINT_TO_BYTE Standard function for type conversion Function call
USINT_TO_DINT Standard function for type conversion Function call
USINT_TO_DWORD Standard function for type conversion Function call
USINT_TO_INT Standard function for type conversion Function call
USINT_TO_LREAL Standard function for type conversion Function call
USINT_TO_REAL Standard function for type conversion Function call
USINT_TO_SINT Standard function for type conversion Function call
USINT_TO_UDINT Standard function for type conversion Function call
USINT_TO_UINT Standard function for type conversion Function call
USINT_TO_WORD Standard function for type conversion Function call
USINT_VALUE_TO_BOOL Standard function for type conversion Function call

VAR Introduces a declaration block for local | Static variable block
variables

VAR_GLOBAL Introduces a declaration block for unit | Unit variables
variables (global variables)

VAR_IN_OUT Introduces a declaration block Parameter block

VAR_INPUT Introduces a declaration block Parameter block

VAR_OUTPUT Introduces a declaration block Parameter block

VAR_TEMP Introduces a declaration block Parameter block

VOID No return value on function call Function

WAITFORCONDITION Introduces the control statement for a WAITFORCONDITION statement
task waiting for a programmable event

WHILE Introduces control statement for loop WHILE statement
execution

WITH Use in conjunction with WAITFORCONDITION statement
WAITFORCONDITION

WORD Elementary data type for word Bit data type

WORD_TO_BOOL Standard function for type conversion Function call

WORD_TO_BYTE Standard function for type conversion Function call

WORD_TO_DINT Standard function for type conversion Function call

WORD_TO_DWORD Standard function for type conversion Function call

WORD_TO_INT Standard function for type conversion Function call

WORD_TO_SINT Standard function for type conversion Function call

WORD_TO_UDINT Standard function for type conversion Function call

306

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Keyword/identifier Description Rule

WORD_TO_UINT Standard function for type conversion Function call
WORD_TO_USINT Standard function for type conversion Function call
WORD_VALUE_TO_LREAL Standard function for type conversion Function call
WORD_VALUE_TO_REAL Standard function for type conversion Function call

XOR

Logic operator

Basic logic operator

A1.3 Rules

The following syntax rules of the ST language are subdivided into rules with formatted
notation (lexical rules) and unformatted notation (syntactic rules). Language description
resources describes the differences between syntactic and lexical rules.

A.1.3.1 Identifiers

Identifier (formatted)

Underscore

H

igit

Letter
H

Underscore

Letter:A..Z,a..z

Digit: 0.. 9

Figure A-3

Identifier

Number (formatted)

(O

Digit)

Digit: 0..9

Figure A-4

SIMOTION ST Structured Text

Number

Programming and Operating Manual, 08/2008

307

Appendix

A. 1 Formal Language Descripfion

A.1.3.2 Notation for constants (literals)

Literals
Literal (formatted)
—| Integer I—
—| Floating-point number I—
—| Time literal I—
—| Character string I—
Figure A-5 Literal
Integer (formatted)
Integers Decimal n
F data type <) digit string
| ! F@J :
Bit data t
Ldaaype —| Binary digit string I—
1) —| Octal digit string I—
Only for data types
SINT, INT and DINT —| Hexadecimal digit string I—
Figure A-6 Integer
SIMOTION ST Structured Text
308 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Floating-point number (formatted)

1)

A 4

Floating-point number
data type

_@

©

string

Decimal digit

1)

O_

Decimal digit y

string

1) At least one option must be offered!

1)

Exponent I—‘

Figure A-7

Floating-point nu

mber

Exponent (formatted)

—®&— O
<
I . P
- | Decimal digit string |—>
—o— 0
<
Figure A-8 Exponent
Time literal (formatted)
Date
Time of day

A 4

Date and time

INNN

Duration

LLTT

v

Figure A-9

SIMOTION ST Structured Text

Time literal

Programming and Operating Manual, 08/2008

309

Appendix

A. 1 Formal Language Descripfion

Character string (formatted)

> () !
“ e

Apostrophe /
inverted comma

Apostrophe /

Characters inverted comma

Figure A-10 Character string

SIMOTION ST Structured Text
310 Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

Characters (formatted)

ASCII code of a (non-printable) character

Hexadecimal digit)—< Hexadecimal digit)—

. e : N\ .
> { Printable character) >

Apostrophe / inverted comma ($27)

Dollar sign ($24)

Line feed LF ($0A)

NCGRONC

Carriage Return + Line Feed CR + LF ($0D$0A)

JC

EO @O @E C

Form feed FF ($0C)

Carriage return CR ($0D)

Horizontal tab HT ($09)

Printable character:
Any character from the extended ASCII character set (ASCII code $20
to $7E and $80 to $FF)
except: Dollar sign ($24) and
apostrophe / inverted comma ($27).
Hexadecimal digits: 0..9, A .. F.

Figure A-11 Character

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 311

Appendix

A. 1 Formal Language Descripfion

Digit string
Decimal digit string (formatted)
, e i iqi N\ >
> 2 { Decimal digit) »
. M\
\J
Decimal digits: 0 .. 9 Underscore
Figure A-12 Decimal digit string
Binary digit string (formatted)
> (2#) - ¢ Binary digit) >
«)
o
Binary digits: 0, 1 Underscore
Figure A-13 Binary digit string
Octal digit string (formatted)
> (st) , (Octal digit) >
. I\
o
Underscore
Octal digits: 0 .. 7
Figure A-14 Octal digit string
Hexadecimal digit string (formatted)
> (16#) , (Hexadecimal digit) >
« M
o
Hexadecimal digits: 0 .. 9, A .. F Underscore

Figure A-15 Hexadecimal digit string

SIMOTION ST Structured Text
312 Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

Date and time

Date (formatted)

DATE#
B 4| Date information I—»

D#)

Figure A-16 Date

Duration (formatted)

TIME# I Decimal representation

Sequence representation IJ—QL—| Decimal representation

Each time unit (e.g. hours, minutes) may be specified just once.

The correct order — days, hours, minutes, seconds, milliseconds — must be maintained.
Value range of the associated time unit: see sequence representation

The value range may be exceeded for the highest-value time unit.

Figure A-17 Time

Time of day (formatted)

—(TIME_OF DAY#)}—
I — 4| Time of day information I—>

TOD#

Figure A-18 Time

Date and time (formatted)

DATE_AND_TIME#

Date information I—®—| Time of day information I—»

DT#)

Figure A-19 Date and time

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 313

Appendix

A. 1 Formal Language Descripfion

Date information (formatted)

0001, 1992 .. 2300 01..12

01..31

—— Decimal digit string

Rou

Decimal digit string

Decimal digit string |—»

Month
(2 digits)

Year
(4 digits)

Day
(2 digits)

Figure A-20 Date information

Time of day parameter (formatted)

0..23

0..59

Decimal digit string

4®_

Decimal digit string

Hour

Minute

0..59

0..999

Decimal digit string

Decimal digit string

Second

Millisecond

Figure A-21 Time of day information

314

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Sequence representation (formatted)

——L{" Decimal digit string F@—@ | Decimal digit string |—<D—,—<:>j

Days Hours [0..23]

l Decimal digit string I—@—@" I Decimal digit string

Minutes [0..59] Seconds [0..59]

Decimal digit string I—@ ¥ >

Milliseconds [0..999]

At least one entry is required.
The value range may be exceeded in the highest-order sequence.

Figure A-22 Sequence representation

Decimal representation (formatted)

Days

—| Decimal digit string Decimal digit string

hours

—| Decimal digit string Decimal digit string

Minutes

Decimal digit string I—l—@ >
seconds

Decimal digit string I—l—®7

Milliseconds

—>——| Decimal digit string

—| Decimal digit string

Decimal digit string

RARE

—| Decimal digit string

The entry to decimal representation is only possible for time units that are not yet defined.

Figure A-23 Decimal representation

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 315

Appendix

A. 1 Formal Language Descripfion

A1.3.3

316

Comments

Note the following when inserting comments:

e Nesting of line comments is not allowed.

e Nesting of block comments is not allowed, but you can nest line comments in block

comments.

® Comments are allowed at any position in the unformatted (syntactic) rules.

e Comments are not allowed in formatted (lexical) rules.

Comment (formatted)

Line comment

o
o

Block comment

Ii
Ii

Figure A-24 Comments

Line comment (formatted)

)]

Printable character

HE&—

Carriage Return
(Enter or Return key)

Figure A-25 Line comment

Block comment (formatted)

A\ 4

()
<

Characters

Figure A-26 Block comment

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

Sections of the ST source file

A. 1 Formal Language Description

Parts of the ST source file (unformatted)

—| Unit

—| Interface

—| Implementation

T T T

User-defined data type

Function

1 x per ST source file

1 x per ST source file

1 x per ST source file

1 x each per interface and implementa-
tion program section

v

Function block

Program

Declaration block

L1

T T T

—| Statement

I_

in the text for more details.

Notice: The figure shows only the options for defining source file sections.
The hierarchy of the sections cannot be shown on one level; refer to the explanations

n x per ST source file

n x per ST source file

n x per ST source file

n x per ST source file

n x per ST source file

Sections of the ST source file

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

317

Appendix

A. 1 Formal Language Descripfion

A1.3.5

318

Structures of ST source files

ST source file (unformatted)

Implementation

UNIT Identifier

source file

Identical to the identifier of the ST

—>——| Unit definition I 2 Interface section section —>
Figure A-27 ST source file
Unit definition (formatted)
Unit identifier Device type

\dentifier F—CO)—

Figure A-28 Unit definition

Interface section (unformatted)

-»-(INTERFACE)—

Interface statements

—(END_INTERFACE)—>

USELIB library identifier AS namespace

USEPACKAGE technology package identifier AS namespace
USES unit identifiers
FUNCTION function identifiers
FUNCTION_BLOCK function block identifiers
PROGRAM program identifiers
User-defined data types (UDT)

Unit variables / global variable block
Unit constants / global constant block
Retentive variable block

Figure A-29 Interface section

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Implementation section (unformatted)

—>—< IMPLEMENTATION)—

Implementation
statements

—< END_IMPLEMENTATION)—>

USES unit identifiers
User-defined data types (UDT)

Unit variables / global variable block
Unit constants / global constant block
Retentive variable block
Functions
Function blocks
Expressions
Programs

Figure A-30 Implementation section

A.1.3.6 Program organization units (POU)

Expression (unformatted)

Expression identifier

-+ EXPRESSION) Identifier |—‘

Expression declaration
section

I

Statement
section

—(_ END_EXPRESSION)}—>

Note that an expression of the BOOL data type must be assigned to the expression
identifier in the statement section!

Figure A-31 Expression

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

319

Appendix

A. 1 Formal Language Descripfion

320

Function (unformatted)

Function identifier VOID

e

- Function)| Identifier

Data type

-) Statement
FC declaration section I—L section —(END_FUNCTION)—>

Note for functions with data type (not VOID):
The return value of the function identifier must be assigned in the statement section!

Figure A-32 Function (FC)

Function block (unformatted)

Function block identifier

—»—(FUNCTION_BLOCK)—| Identifier |—‘

FB declaration section J—Statement section —< END_FUNCTION_BLOCK)—»

Figure A-33 Function block (FB)

Program (unformatted)

Program identifier

-+ PROGRAM)—| Identifier |—‘

Program declaration section L Statement section —< END_PROGRAM)—>

Figure A-34 Program

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

A1.3.7 Declaration sections

Expression declaration section (unformatted)

— User-defined data types (UDT) <2> |
—| Constant block <2> I—

> r I FC parameter block <1> <3> I >
—| Temporary variable block in FC <3> I—

—| Jump label declaration <3> I—

<1> The block is permitted only as of Version V4.1 of the SIMOTION kernel.
<2> This block may appear more than once in the declaration section.
<3> This block may appear just once in the declaration section.

Figure A-35 Expression declaration section

FC declaration section (unformatted)

—| User-defined data types (UDT) <1> I—
—| Constant block <1> I—

> Y I FC parameter block <2> I >
—| Temporary variable block in FC <2> I—

—| Jump label declaration <2> I—

<1> This block may appear more than once in the declaration section.
<2> This block may appear just once in the declaration section.

Figure A-36 FC declaration section

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 321

Appendix

A. 1 Formal Language Description

FB declaration section (unformatted)

—| User-defined data types (UDT) <1> I—
— Constant block <1> |
—| FB parameter block <2> I—
' | —| Static variable block <2> I— '
—| Temporary variable block in FB/program <2> I—

—| Jump label declaration <2> I—

<1> This block may appear more than once in the declaration section.
<2> This block may appear just once in the declaration section.

Figure A-37 FB declaration section

Program declaration section (unformatted)

—| User-defined data types (UDT) <1> I—
—| Constant block <1> I—

> Y I Static variable block <2> I >
—| Temporary variable block in FB/program <2> I—

—| Jump label declaration <2> I—

<1> This block may appear more than once in the declaration section.
<2> This block may appear just once in the declaration section.

Figure A-38 Program declaration section

SIMOTION ST Structured Text
322 Programming and Operating Manual, 08/2008

Appendix

A.1.3.8 Structure of the declaration blocks

Constant blocks

A. 1 Formal Language Description

Constant block (unformatted)

—»—(VAR CONSTANT) -

Constant declaration

END_VAR ’—»

Figure A-39 Constant block

—>—< VAR_GLOBAL CONSTANT

Unit constants / global constant block (unformatted)

%

+—1 Constant declaration

END_VAR ’—»

Figure A-40 Unit constants / global constant block

Variable blocks

Unit Variables / Global Variable Block (Unformatted)

Variable declaration

N
—+(VAR GLOBAL)—

Symbolic Pl access

Instance
declaration

END_VAR)—>

Figure A-41 Unit variables / global variable block

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

323

Appendix

A. 1 Formal Language Descripfion

Retentive variable block (unformatted)

—»—(VAR_GLOBAL RETAIN) —| Variable declaration (END_VAR)—»

Figure A-42 Retentive variable block

Temporary variable block in FC (unformatted)

VAR ‘ Variable declaration (END_VAR)—»

Figure A-43 Temporary variable block in FC

Temporary variable block in FB and program (unformatted)

-+ VARTEMP) Variable declaration (END_VAR)—

Figure A-44 Temporary variable block in the FB/program

Static variable block (unformatted)

Variable declaration

VAR - Symbolic Pl access END_VAR)—»

Instance
declaration

Figure A-45 Static variable block

SIMOTION ST Structured Text
324 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Parameter fields

FB parameter block (unformatted)

—(VARLINPUT Formal parameter

For input parameter

“—| Variable declaration I

=+ VAR_OUTPUT END_VAR)}———

For output parameter

A 4

Variable declaration

I
—(VARIN.OUT)—
J

For in/fout parameter Instance declaration

Initialization not possible

The VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT keywords may be used just once in the
declaration section!

Figure A-46 FB parameter block

FC parameter block (unformatted) Formal parameter

VAR_INPUT ~ }———— Variable declaration |

For input parameter

—>x END_VAR —>
Variable declaration I—‘
VAR_IN.OUT)— |J

For infout parameter Instance declaration

Initialization not possible

The VAR_INPUT and VAR_IN_OUT keywords may be used just once in the declaration section!

Figure A-47 FC parameter block

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 325

Appendix

A. 1 Formal Language Descripfion

Jump labels

Declarations

326

Jump label declaration (unformatted)

Jump label

-+ LABEL)—5—|

Identifier |

—@—(END_LABEL)—

)

N

Figure A-48 Jump label declaration

Constant declaration (unformatted)

c Identifier

Identifier of the
constants

o/

Data type

Initialization

ARRAY
data type
specification

Figure A-49 Constant declaration

Variable declaration (unformatted)

Identifier

Identifier of the variable
or the formal parameter
in FB or FC)

)
o/

Data type

Initialization Il—@—v

ARRAY data

type
Specification

Figure A-50 Variable declaration

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Symbolic Pl access (unformatted)

Integer
data type

— Absolute PI
—>—| Identifier I—(AT)— access

Bit data type

Range of declared data type must
correspond to the range of the
absolute identifier.

Figure A-51 Symbolic Pl access

Instance declaration (unformatted)

—>—“—| Identifier

I_

Instance identifier

)

Function block
identifier

N

FB-ARRAY
specification

Function blocks must already exist.

Initialization not possible.

Figure A-52 Instance declaration

FB ARRAY specification (unformatted)

Index specification

Comane (D

Initialization
expression

Initialization
—@_ expression _®_

DINT data type

DINT data type

Function block
identifier

Figure A-53 FB ARRAY specification

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

327

Appendix

A. 1 Formal Language Descripfion

Initialization

328

Initialization (unformatted)

-

Constant expression

|7

Initialization of elementary data types

A 4

(1)
T

Array initialization list

v

(1)
\J

Initialization of arrays

—0—

Structure initialization list

-0

Initialization of individual components within structures

Figure A-54

Initialization

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Constant expression (unformatted)

I Constant I

Basic logic
operator

Constant Relational
expression operator

Constant
expression

Basic arithmetic
operator

A 4

)
S Unary minus

Negation

I Constant expression

Data type conversion function

—‘ @_ Constant
expression

Constant
expression

@ Constant
expression

I——»

Figure A-55 Constant expression

Array initialization list (unformatted)

I Constant expression

Constant expression

> ‘I Decimal digit string

Repeat factor

Array initialization list

)
J

Figure A-56 Array initialization list

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

329

Appendix

A. 1 Formal Language Descripfion

Structure initialization list (unformatted)

] Identifier |—®—| Initialization F——o

Designation of the
component

)
\J

Figure A-57 Structure initialization list

A1.39 Data types

Data type (unformatted)

Elementary data type

UDT identifier

User-defined data types — UDT

System data type

TO data type

ll[ll
L TT

Figure A-58 Data type

SIMOTION ST Structured Text
330 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Elementary data types

Elementary data type (unformatted)

Bit data type

Numeric data type

Time type

String data type

llhl
LLTT

Figure A-59 Elementary data type

Bit data type (unformatted)

— BOOL }—— Bit

(. s1E) Byte
—(worp)———{ Word
4< DWORD)— Double word

Figure A-60 Bit data type

Numeric data type (unformatted)

’—{ Integer data type I—‘
\—{ Floating-point number data type IJ

Figure A-61 Numeric data type

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 331

Appendix

A. 1 Formal Language Descripfion

Integer data type (unformatted)

SINT Short integer

[

INT Integer

DINT Double precision integer

USINT Unsigned short integer

UINT Unsigned integer

UDINT Unsigned integer with double precision

i

Figure A-62 Integer data type

Floating-point number data type (unformatted)

REAL Floating-point number
LREAL Long floating-point number

Figure A-63 Floating-point number data type

Y

v

Time type (unformatted)

TIME Time

DATE Date

!

1

TIME_OF_DAY D

TOD

Time of day

1

DATE_AND TIME ~)——

Date and time

Figure A-64 Time data type

SIMOTION ST Structured Text
332 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

String data type (unformatted)

—+—f STRING) >

Constant expression

Character string length
INT data type, value: 1 .. 254
Default: 80

Figure A-65 String data type

User-defined data types

User-defined data types — UDT (unformatted)

TYPE . Identifier

UDT identifier

—| Data type I—

ARRAY |

| datatype ®—| Initialization .—@— END_TYPE
specification
Enumerator

|| datatype ||

specification

STRUCT
L_| datatype
specification

Figure A-66 User-defined data type

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 333

Appendix

A. 1 Formal Language Descripfion

334

ARRAY data type specification (unformatted)

Index specification

ARRAY 0 Constant expression —@— Constant expression

DINT data type DINT data type

——(OoF)—{ Datatype

F——o

Figure A-67 ARRAY data type specification

STRUCT data type specification (unformatted)

Components Ve
—+—{ STRUCT)—% declaration { END_STRUCT)—®—>

Do not forget to terminate the END_STRUCT keyword with a semicolon!

Figure A-68 STRUCT data type specification

Component declaration (unformatted)

Identifier Data type Initialization I—l—®—>
Identifier of the
component ARRAY
data type
specification
Figure A-69 Component declaration
Enumerator data type specification (unformatted)
Enumerator element
. O} [o | M) .
> (() x | Identifier [)) >
()
o

Figure A-70 Enumerator data type specification

SIMOTION ST Structured Text

Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

A.1.3.10 Statement section

Statement section (unformatted)

Jump label

’_{ Identifier |_Q)_l
> | Statement I_"_®__>

b |

Figure A-71 Statement section

Statement (unformatted)

—| Value assignments I—

e
Y

»> I Subroutine execution

—| Control statement I—

Figure A-72 Statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 335

Appendix

A. 1 Formal Language Descripfion

A.1.3.11 Value assignments and operations

Value assignment and expression

Value assignment (unformatted)

Variable of the
elementary data type

Variable of the
enumerator data type

Array variable

Structured variable

Outputs only

_|
_|

—>——| Absolute Pl access
_|

External tag

T T T T

— Access to FB input parameters <1> }—

—| Direct bit access

—— : H Expression |—>

<1> I—

<1> Only for activated "Permit language extensions" compiler option:

Figure A-73 Value assignments

336

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

Expression (unformatted)

1 Operand

Basic
logic operator

—| Expression

Relational operator I Expression I—

Basic arithmetic

operator
Power Exponent
+—| Expression I m**, I Expression I——>
/\‘_' I Expression I—
Unary minus
NOT
Negation

@—' Expression I

©

Figure A-74 Expression

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 337

Appendix

A. 1 Formal Language Description

Operands

Operand (unformatted)

Variable of the elementary data type

Variable of the enumerator data type

Array variable

Structured variable

Absolute Pl access

Inputs and outputs

Constant

FC call

Access to FB output parameters

External tag

A
-
\

TTTTTT ITTT]T

Access to FB input parameters

A
-
\

Direct bit access

|
| L N R R R R

<1> Only for activated "Permit language extensions" compiler option:

Figure A-75 Operand

Structured variable (unformatted)

Start of identifier is variable name or
parameter name, component name after the dot

Identifier |—‘
—>x >

Simple array

()
N

Figure A-76 Structured variable

SIMOTION ST Structured Text
338 Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

Absolute Pl Access (formatted)

0% () Nomber ([t

0..63 0..7
Input

0
@ 0..63 L,

WORD
@) [@)

Output 0..62
DWORD
0..60

Figure A-77 Absolute Pl access

Constant (unformatted)

—| Literal I—

Identifier of the constants

—| Enumerator value I—

A 4

e
v

Figure A-78 Constant

Enumerator value (formatted)

UDT identifier

»> I Enumerator element I—»

Enumerator data type

Figure A-79 Enumerator value

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 339

Appendix

A. 1 Formal Language Descripfion

340

External variable (unformatted)

System variable or configuration data item
of the device

System variable or configuration data item
of a technology object

1/0 variable

—
—

Global device variable

LI

Figure A-80 External tag

Access to FB output parameter (formatted)

Identifier of the

—»— Identifier of the FB instance ——»
output parameter
Figure A-81 Access to FB output parameters
Access to FB input parameters (formatted)
Only for activated "Permit language extensions" compiler option:
| ifier of th
——— Identifier of the FB instance dentifier of the —>

O

input parameters

Figure A-82 Access to FB input parameters

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix
A. 1 Formal Language Description

Direct bit access (formatted)

Only for activated "Permit language extensions" compiler option:

—| Simple variable

Array variable

Structured variable

L L L
T T T 7T

External tag

—O—| Constant I—»

Data type: ANY_INT

— Access to FB output parameters |—

— Access to FB input parameters —

Permitted data types:
each BYTE, WORD, DWORD

Figure A-83 Bit access

Operators

Basic logical operator (unformatted)

AND @ XOR m

v

Figure A-84 Basic logic operator

Arithmetic operator (unformatted)

—| Basic arithmetic operator I—

()
S

Figure A-85 Arithmetic operator

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 341

Appendix

A. 1 Formal Language Descripfion

Basic arithmetic operator (unformatted)

00 ® o o

Figure A-86 Basic arithmetic operator

Relational operator (unformatted)

09 9 9 0 9

Figure A-87 Relational operators

SIMOTION ST Structured Text
342 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

A.1.3.12 Call of functions and function block calls

FB call (unformatted)

| Identifier |

Instance name

—| Identifier I—®—| Expression

Instance name Index
DINT data type

L@—{ FB parameter I—@—»

Figure A-88 FB call

FC call (unformatted)

System function identifier

TO function identifier FC parameter I—@—»

Function identifier

Figure A-89 FC call

FB parameter (unformatted)

—| Input assignment I—

> c I In/out assignment

—| Output assignment I—

)
S

e
A

Figure A-90 FB parameter

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 343

Appendix

A. 1 Formal Language Descripfion

344

FC parameter (unformatted)

Expression

M)
\J

Call in short form

Input assignment

In/out assignment

()
o/
Figure A-91 FC parameter
Input assignment (unformatted)
Formal parameter Actual parameter
—>—| Identifier I F\‘F, I Expression I—»

Identifier of the
input parameter

Figure A-92 Input assignment

In/out assignment (unformatted)

Formal parameter

Actual parameter

Identifier

-

O

Variable identifier

I—»

Designation of the
in/out parameter

Simple variable

Figure A-93 In/out assignment

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Output assignment (unformatted)

Formal parameter Actual parameter
- Identifier |_@_| Variable identifier F——o
Identifier of the Simple variable

in/out parameter

Figure A-94 Output assignment

A.1.3.13 Control statements

Branches

IF statement (unformatted)

—>—< IF)—| Expression I—(THEN)—| Statement section

Condition of data type BOOL

ELSIF)—| Expression |—< THEN)—| Statement section

Condition of data type BOOL

ELSE)—— Statement section END_IF ©

Do not forget to terminate the END_IF keyword with a semicolon!

Figure A-95 IF statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 345

Appendix

A. 1 Formal Language Description

CASE statement (unformatted)

—| Variable I—

Enumerator data type

—| Expression I—"

Data type ANY_INT

T{ Value list I—@—' Statement section

J—(ELSE)—| Statement section I—l—C END_CASE)—©—>

Do not forget to terminate the END_CASE keyword with a semicolon!

Figure A-96 CASE statement

Value list (unformatted)

| Constant I
Value
—| Constant I—@—' Constant I—
Value 1 Value 2
Value 1 <= Value 2

()
\J

Figure A-97 Value list

SIMOTION ST Structured Text
346 Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

Repetition statements and jump statements

Repetition statement and jump statement (unformatted)

FOR statement

WHILE statement

REPEAT statement

EXIT statement

RETURN statement

WAITFORCONDITION statement

GOTO statement

|
I
TTTTTTT

Figure A-98 Repetition statement and jump statements

FOR statement (unformatted)

Variable identifi C I
FOR ariable identifier Expression

Start value

Simple variable, data type
SINT/USINT/INT/UINT/DINT

TO)—' Expression IJ—C BY)—' Expression I—l—

End value Increment

L(DO)—' Statement section END_FOR 0

Do not forget to terminate the END_FOR keyword with a semicolon!

Figure A-99 FOR statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 347

Appendix

A. 1 Formal Language Descripfion

348

WHILE statement (unformatted)

—>—< WHILE)—' Expression |—<D0

Condition of data type BOOL

L{ Statement section —(Enp_wHiLE)—®—>

Do not forget to terminate the END_WHILE keyword with a semicolon!

Figure A-100 WHILE statement

REPEAT statement (unformatted)

—>—< REPEAT)—' Statement section I—C UNTIL)—\
L{ Expression |—(END_REPEAT)-@-»

Condition of data type BOOL

Do not forget to terminate the END_REPEAT keyword with a semicolon!

Figure A-101 REPEAT statement

EXIT statement (unformatted)

> (EXIT) 0O >
Figure A-102 EXIT statement
RETURN statement (unformatted)
> (' RETIRN) O >

Figure A-103 RETURN statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A. 1 Formal Language Description

WAITFORCONDITION statement (unformatted)

——(_ WAITFORCONDITION)—‘

\—{ Expression identifier I——®—| FC parameter I—@ ¥

Condition: The call of an expression with parameters is
Name of a construct declared with permitted only as of Version V4.1 of the
EXPRESSION SIMOTION kernel.

Edge evaluation

WITH Expression | * (" po)

BOOL data type
TRUE: Rising edge of the condition is evaluated.
FALSE: Condition is evaluated statically (default setting).

L{ Statement section __|—(__END_WAITFORCONDITION _)—(;)—

Do not forget to terminate the
END_WAITFORCONDITION keyword with a semicolon!

Figure A-104 WAITFORCONDITION statement

GOTO statement

+—————(Got0)— Jumplabel |—O >

Jump label defined in a statement and optionally
in the jump label declaration (LABEL).

Figure A-105 GOTO statement

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 349

Appendix
A.2 Compiler Error Messages and Remedies

A.2 Compiler Error Messages and Remedies

This section provides an overview of the compiler error messages and their correction.

A.21 File access errors

Table A-9 File access errors

Error Description

1000 A read/write error has occurred on file access.

1001 Unable to load the file with the plain text error messages; cannot output error message texts.
Please refer to the online help using the error number!

1002 The created code could not be stored. Please close some windows and recompile!

1003 A read/write error has occurred on opening the file. Please close the application and try again!

1100 The option for stating a preprocessor definition contains an invalid identifier as the defined token.
The correct syntax of the call option is: -D identifier[=[text]]
Examples:

o -D myident // Definition of myident; this can be queried using #ifdef.
e -D myident=// myident is defined as empty character string

o -D"myident=This is a text" // myident is defined as character string 'This is a text'. The
quotation marks only have to be used if the replacement text contains a blank.

A2.2 Scanner errors

Table A-10 Scanner errors (2001 — 2002)

Error Description
2001 The specified character is illegal.
2002 The specified identifier contains illegal characters or combinations of characters. According to

IEC 61131, an identifier must start with a letter or an underscore. Any number of letters, digits, or
underscores may follow, but no more than one underscore in a row.

SIMOTION ST Structured Text
350 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

A.2.3 Declaration errors in POU
Table A-11 Declaration errors in POU (3002 - 3027)

Error Description

3002 Keyword "IMPLEMENTATION" to identify the code section of the load unit is expected.

3003 The specified declaration block is not permitted in this context.

3004 The VAR, VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR CONSTANT variable declaration blocks are
permitted just once for each POU.
Up to Version V3.1 of the SIMOTION kernel, the VAR_GLOBAL, VAR_GLOBAL CONSTANT, VAR_GLOBAL
RETAIN declaration blocks are permitted just once in the interface or implementation section.

3005 TASK statement: The task link has already been made in the source file for the specified task. Further task
linking not possible.

3006 Incorrect stack size for task specified. Only positive integers are permitted.

3007 The specified identifier must be a task identifier; see task configuration.

3008 The specified identifier must be a program identifier. The declaration is made in the statement PROGRAM xx
... END_PROGRAM.

3009 The EXPRESSION keyword must be followed by an identifier. The declaration is made in the statement
EXPRESSION xx ... END_EXPRESSION.

3010 The specified identifier is not an EXPRESSION identifier. Check whether the declaration was made using the
statement EXPRESSION xx ... END_EXPRESSION.

3011 The TASK statement is not permitted in the unit. Use the task configuration in the Workbench.

3012 The specified identifier has already been declared at another position. It cannot be used again as a function
identifier.

3013 The specified identifier has already been declared at another position. It cannot be used again as a function
block identifier.

3014 The UNIT statement is expected. The following forms are permissible:
e UNIT myunit;
e UNIT myunit : dvtype;
The UNIT statement is only required when compiling at the ASCII file level. It is optional when the compiler is
called from the Workbench.

3015 The source file is not ended with END_IMPLEMENTATION. Observe the structure for a source file!

3016 No further statements may be specified after keyword END_IMPLEMENTATION.

3017 The task declaration is not ended with END_TASK. Observe the structure for a source file!

3018 The POU declaration is not ended with END_FUNCTION, END_FUNCTION_BLOCK, or END_PROGRAM.
Observe the structure for a source file!

3019 A POU starting with keywords FUNCTION, FUNCTION_BLOCK, or PROGRAM is expected.

3020 The task linking statement is expected. Configuration: TASK tname ... END_TASK;

3022 The keyword INTERFACE is expected. See the structure for a source file.

3023 Keyword INTERFACE or IMPLEMENTATION is expected. See the structure for a source file.

3024 Syntax error in TASK statement. Correct structure: TASK thame ... END_TASK;

3025 The specified identifier has already been declared at another position. It cannot be used again as a program

identifier.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 351

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

3026 The WAITFORCONDITION statement cannot be used recursively. An attempt was made to use a
WAITFORCONDITION statement a second time within a WAITFORCONDITION statement. This is not
possible.

3027 An attempt was made to insert a WAITFORCONDITION statement within an EXPRESSION ...
END_EXPRESSION block. This is not possible. The WAITFORCONDITION statement cannot be used within
an expression.

A24 Declaration errors in type declaration
Table A-12 Declaration errors in type declarations (4001 - 4051)

Error Description

4001 The specified identifier is a standard function identifier that cannot be overwritten. Choose a
different identifier.

4002 The specified identifier has already been used. Use as a type identifier is not possible. Choose a
different identifier.

4003 The specified identifier has already been used. Use as a constant identifier is not possible.
Choose a different identifier.

4004 The specified initialization value has an incorrect format. Choose the initialization value that
corresponds to the data type declaration.

4005 Syntax error in type declaration.

4006 Syntax error in the structure element specification in the structure declaration.

4007 Syntax error in declaration of an ARRAY data type.

4008 Syntax error in the identifier list specification. The identifiers must be separated by commas.

4009 The specified constant identifier has been assigned different values. This occurs when
enumeration data types are declared. Identical enumeration elements in different enumeration
data types must be located in the same position in the type declaration.

4010 The specified type identifier is not exported from the source file, although the POU in which it is
used, is exported. Use a different data type or declare the data type in the implementation
section.

4011 A constant declaration requires the specification of an initialization value. Example: x : DINT := 5;

4012 The specified data type must be declared outside the POU. For VAR_INPUT, VAR_OUTPUT,
and VAR_IN_OUT, the type identifiers must not be declared locally in the POU, as they must also
be known outside the POU for parameter transfer purposes.

4013 The specified value is used several times in the enumeration data type. The values in the
enumeration data type must differ, however.

4050 The data type or variable declaration creates a data type that is larger than the specified
maximum permissible data size.

4051 The variable declaration requires a memory area that is larger than the specified maximum
permissible memory size.

SIMOTION ST Structured Text
352 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

A.2.5 Declaration errors in variable declarations
Table A-13 Declaration errors in variable declarations (5001 — 5016, 5100 — 5112, 5500 — 5509)

Error Description

5001 The specified constant value causes the value range to be exceeded and cannot be converted to the requested
type.

5002 The specified identifier has already been used. Use as a variable identifier is not possible. Choose a different
identifier.

5003 Syntax error in variable declaration.

5004 The specification of a data type is expected (simple or derived data type).

5005 The specified constant value has the wrong data type or causes the value range to be exceeded.

5006 Check the number of initialization values for array initialization.

5007 Syntax error in the specification of the time and date literals.

5008 A function block instance cannot be created at the specified position. For example, FB instances cannot be
created in functions. In addition, output parameters (VAR_OUTPUT) of function blocks cannot be FB instances.

5009 The data type specified in the declaration cannot be applied to the variable with absolute address. An integer or
bit data type with matching bit width must be used.

5010 An attempt was made to assign a memory address to a variable. This is not possible at the specified position.
Use this assignment only within the VAR_GLOBAL declaration of a unit or within the VAR declaration of a
PROGRAM.

5012 The specified variables cannot be preassigned an initialization value.

5014 Incorrect initialization of a data structure. The initialization value for a component was specified more than once.

5016 The initialization of variables and data types with technology objects defined in the project is not possible.
Technology objects are themselves variables and so cannot be used for the initialization.

5100 The specified variables cannot be preassigned an initialization value.

5110 Special characters can be specified via $... in the following way: $$, $', $L, $N, $P, $R, $T. Moreover, the
numeric value of a character can be specified via $xx, whereby xx stands for the two-digit hexadecimal
specification of the character code.

5111 The special character can only be specified via $... . This affects $L, $N, $P, $R, $T

5112 Multi-line character string constants are not permitted. To produce a new line in the output, use the appropriate
special character in the character string, e.g. N, SRL.

5500 The specified jump label identifier was already defined. Choose a different name.

5501 The specified jump label identifier has not been defined. Include this identifier in the LABEL declaration.

5502 The jump label identifier has been assigned more than once. However, each jump label can only be used once
as a label.

5503 The jump label is specified as a jump destination, but the associated label is missing.

5504 No jumps are possible in subordinate control structures (e.g. WHILE loops). The specified jump label cannot be
used at this position.

5505 No jumps are possible in subordinate control structures (e.g. WHILE loops). The specified jump destination
cannot be reached.

5506 No jumps are possible in WAITFORCONDITION blocks. The specified jump label cannot be used at this
position.

5507 No jumps are possible in WAITFORCONDITION blocks. The specified jump destination cannot be reached.

5509 Jump labels cannot be used within a CASE statement. The syntax does not allow any differentiation between a

jump label and the value list of the CASE statement.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 353

Appendix

A.2 Compiler Error Messages and Remedies

A.2.6 Errors in expression
Table A-14 Errors in the expression (6001 - 6140)
Error Description
6001 Syntax error: A statement terminated with a semicolon is expected,
e.g. a:=b*c;
6002 Syntax error: An expression is expected, e.g. x <y .
6003 The specified identifier is no variable identifier. You must specify a variable identifier. Check whether the
indicated identifier is covered.
Up to and including V4.0, access to global device identifiers was possible within a program or function block of
the same name despite warning 16021.
6004 The index for array access must be the DINT data type. Perform a suitable type conversion or use another
expression.
6005 Type conflict in expression. One of the operands cannot be converted to the data type of the calculation, or the
result assignment produces a type conflict.
6006 The specified variable cannot be accessed. Therefore it cannot be used in the expression. Possible causes:
e Variable cannot be read.
e Attempt to access a local variable of a function or function block from outside.
6007 Cannot write specified variable. A value assignment is not possible.
6008 The specified function does not supply a return value. An application in the expression is therefore not possible
(function declared with a return value of VOID).
6009 The specified identifier does not refer to a function or a function block instance. Therefore it cannot be used as
function identifier.
6010 The specified identifier is not included as an input parameter (VAR_INPUT) or in/out parameter (VAR_IN_OUT)
in the declaration of the POU (function or function block). It cannot be used in the POU call.
6011 The number of function arguments in the call differs from the declaration, or the call parameters required are
missing in the call.
6012 RETURN is not permitted syntactically at this position. RETURN may only be used in functions.
6013 EXIT is not permitted syntactically at this position. EXIT can only be used within FOR, WHILE, and REPEAT.
6014 The specified index value is outside the array limits. Only index values that match the array declaration are
permissible.
6015 The specified task control command cannot be applied to the task. It is not allowed for this type of task.
6016 The specified task is deactivated in the execution system. It must be enabled before it can be used.
6017 Syntax error on specifying programs within a task. The programs must be listed by name and separated by
commas.
6018 The specified identifier does not refer to a PROGRAM. Therefore it cannot be used as a program identifier.
6019 Multiple assignment of program to task. Only one assignment is possible.
6020 Syntax error on specifying directly displayed variables. Inputs must have the syntax %Ix.y and outputs the
syntax %Qx.y.
6021 The specified byte offset of the directly displayed variables lies outside the permissible address space.
6022 The specified byte offset of the directly displayed variables lies outside the permissible address space. Values 0
to 7 are permissible.
6023 The return value of the function was not assigned. An assignment is however imperative.
6024 A variable with the specified identifier is not included in the task start information.
SIMOTION ST Structured Text
354 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

6025 The condition variable and condition values of a CASE statement must be of the data type SINT, INT, DINT,
USINT, UINT or UDINT. It must be possible to implicitly convert the condition values to the data type of the
condition variables.

6026 The specified message identifier is not contained in the message configuration. Switch to the message
configuration and add the identifier.

6027 System variable access is only possible directly by means of a technology object reference. Access by means of
a structure or array is not possible. Create a local variable of type TO and assign the TO reference to this
variable. You can then access the required system variable by means of this local TO variable.

6028 Type conflict in expression at specified operation. One of the operands cannot be converted to the data type of
the calculation, or the result assignment produces a type conflict. The specified data type in the expression is
expected.

6029 The specified function parameter does not have a default value, so it is imperative to specify a value when the
function is called.

6030 An attempt was made to transfer an expression to an in/out parameter (VAR_IN_OUT). This is not possible.
User variables must be specified as in/out parameters.

6031 An attempt was made to transfer a system variable (TO, I/O direct access) to an in/out parameter
(VAR_IN_OUT). This is not possible. User variables must be specified as in/out parameters.

6032 An attempt was made to transfer a variable in the process image to an in/out parameter (VAR_IN_OUT). This is
not possible. User variables must be specified as in/out parameters.

6033 An attempt was made to transfer a variable with a non-matching data type to an in/out parameter
(VAR_IN_OUT). However, an Implicit type conversion is not possible. User variables with the correct data type
must be specified as in/out parameters.

6034 An attempt was made to transfer a read only variable to an in/out parameter (VAR_IN_OUT). This is not
possible. In/out parameters must be read/write.

6035 An attempt was made to transfer a constant to an in/out parameter (VAR_IN_OUT). This is not possible. In/out
parameters must be user variables.

6036 An operation is applied to a constant. The value of the constant is outside the definition range for the function.
Examples are:

e Application of SQRT to a negative number.
e Use of logarithmic functions on a number <= 0.
e Use of ASIN or ACOS on a number outside the interval [0..1]

6037 An attempt was made to divide a constant by zero. This operation is not permitted.

6038 The specified function parameter occurs more than once in the argument list.

6039 The specified POU (function or function block) cannot be used. Possible causes:

e The definition of the POU in the implementation section is missing. Only the prototype was specified in the
interface section.

e The POU is fully defined only after its use (e.g. call, instance declaration). If necessary, move this POU in
the program source before the POU in which it is used.

¢ An instance of the function block cannot be declared as unit variable in the same program source in which
this function block is defined.

6040 Only simple variables may be used as semaphores; indexing is not possible.

6041 The message function requires an auxiliary value of the specified data type. Type conversion is not possible.

6042 The message function requires that you specify a message number. The specified message number is invalid.

6050 Type conflict in expression at specified operation/variable. One of the operands cannot be converted to the type

of the calculation, or the result assignment produces a type conflict. A conversion between source file type and
target type is not possible.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 355

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

6051 The expression contains a type conflict for the specified operation. One of the operands cannot be converted to
the data type of the other operand to perform the calculation, or the operand data types are not permitted for this
operation.

6052 Type conflict in expression. The specified data type cannot be used for the operation (see marshalling
functions).

6053 The expression contains a type conflict for the specified operation. This operation is not permissible on the
specified data type.

6054 Type conflict in expression. The specified variable cannot be used as indexed array variable.

6060 At the function call, there is a mixture of assignments of function arguments and setting parameters. Use one
form of the function call. Example:
o f(xy)or
o f(in1:=x,in2:=y);

6061 The specified parameter of the function or the function block is an in/out parameter. Consequently, a variable
must be assigned when the POU is called.

6062 The specified identifier cannot be used as a function argument. Only variables from the declaration blocks
VAR_INPUT and VAR_IN_OUT are permitted.

6070 Access to configuration data is only possible for variables that have been specified completely. Append the
name according to the configuration data for the selected technology object.

6080 The specified variable is no input or output variable that can be directly accessed. Such a variable must be
declared in the 1/0 container of the respective device; it must have the syntax PI* or PQ*.

6100 The specified construct can only be compiled if the device type is set. Add the device type to the unit statement
or set the device type in the program container.

6110 The specified construct cannot be used in libraries.

6111 The specified construct cannot be used in libraries.

6112 The specified construct cannot be used in libraries.

6113 Access to technology objects and devices is not allowed in libraries.

6130 The specification of an interval is not permissible for the data type indicated in the CASE statement.

6140 The specification of a constant in ENUM_TO_DINT requires specifying the data type in the form of
enum_type#value.

6150 The specified bit offset lies outside the valid range for the specified data type.

6200 Only for "Permit language extensions" compiler option (-C lang_ext):
The called PROGRAM contains instance data (VAR ... END_VAR declaration block) stored in the user memory
of the assigned task. This means a call of the PROGRAM from another POU is not possible. Compile the source
file with the "Create program instance data only once" compiler option (-C prog_once) or remove the instance
data.

6201 Only for "Permit language extensions" compiler option (-C lang_ext):
The call of a PROGRAM is not supported in functions. Such calls can be made only in function blocks or
another PROGRAM.

SIMOTION ST Structured Text
356 Programming and Operating Manual, 08/2008

Appendix

A2.7

Table A-15

A.2 Compiler Error Messages and Remedies

Syntax errors, errors in expression

Syntax errors, errors in the expression (7000 - 7014)

Error

Description

7000

A syntax error has occurred. Possible causes:

¢ Incorrectly ended control structures (e.g. END_IF missing)
e Statements not terminated with ;

e Missing parentheses

7001

The specified identifier does not refer to a constant. Please enter one constant per value or
identifier.

7002

A signed integer is expected. The integer can be of data type SINT, INT, or DINT.

7003

When specifying the interval, the initial value must be less than or equal to the end value. This
applies to the declaration of arrays and the specification of the interval in CASE selection
conditions.

7004

An initialization value is expected. The value must be a constant. Constants can be assigned as
follows:

e Directly per value
e Symbolically via a preceding constant declaration
e As an expression containing constants only

7009

An expression that supplies data type BOOL is expected as condition for WHILE, REPEAT, and
IF. This can be specified as a variable of data type BOOL or via a comparison expression. You
can also specify a function with a return value of data type BOOL.

7010

A syntax error has occurred. Possible causes:

e Incorrectly terminated control structures (e.g. END_IF missing)
e Statements not terminated with ;

e Missing parentheses

7011

A syntax error has occurred. Possible causes:

¢ Incorrectly terminated control structures (e.g. END_IF missing)
e Statements not terminated with ;

e Missing parentheses

7012

A syntax error in the statement, that starts at the specified line, has occurred. Possible causes:
¢ Incorrectly terminated control structures (e.g. END_IF missing)

e Statements not terminated with ;

¢ Missing parentheses

7013

A syntax error has occurred. An illegal construct is being used.

7014

A syntax error has occurred. Possible causes:

¢ Incorrectly terminated control structures (e.g. END_IF missing)
e Statements not terminated with ;

e Missing parentheses

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 357

Appendix

A.2 Compiler Error Messages and Remedies

A.2.8 Error when linking a source file
Table A-16 Error when linking a source file (8001, 8100)

Error Description

8001 The specified POU has been exported to the INTERFACE section, but an IMPLEMENTATION section is

missing. Either delete the export statement or specify a valid implementation.

8100 The maximum size of the data area that can be reached using HMI is 65536 bytes. This limit has been

exceeded with the specified variable. All subsequent variables cannot be reached either.
A.29 Errors while loading the interface of another UNIT or technology package
Table A-17 Errors while loading the interface of another UNIT or a technology package
(10000 - 10037, 10100 - 10101)

Error Description

10000 The specified unit has an invalid file format. Probably, the unit was created using an older version of the
compiler or compiled using incompatible options. If a unit is involved, it should compiled first. Then repeat the
current compilation. If a package is involved, a newer version should be installed.

10001 The unit name has an invalid format. The rules for identifiers in ST are also true for unit names; the following
restrictions apply to their length:

e Up to Version V4.0 of the SIMOTION Kernel: 8 characters.
e As of Version V4.1 of the SIMOTION Kernel: 128 characters.

10002 Error while loading the interface of another UNIT, a library or technology package. The specified identifier is
contained in two different imported units, libraries or technology packages.

e Remove a unit, library or technology package from the import list or

e Establish uniqueness between the identifiers in imported units, libraries or technology packages. Change
the exporting units in the interface section or specify a namespace for a library or a technology package
(USELIB ... AS namespace; USEPACKAGE ... AS namespace;).

10003 The specified data type has an invalid memory layout. Probably, the unit was created using an older version
of the compiler or compiled using incompatible options. If a unit is involved, it should compiled first. Then
repeat the current compilation. You can also perform "Save and recompile everything".

If a package is involved, a newer version should be installed.
If the error persists, inform the support department.

10004 The exported identifiers of the specified unit could not be loaded. Close some applications and try again.

10005 A recursion was detected on loading packages. The specified package has already been loaded with
USEPACKAGE and cannot be specified a second time.

10006 A recursion was detected on loading the unit. The specified unit has already been loaded with USES and
cannot be specified a second time.

10007 The maximum number of imported units which can be referenced in a unit was exceeded. A maximum of 223
imported units per load unit are permissible. Both units imported directly with USES and indirectly imported
units are counted.

10008 The number of imported packages that can be referenced in a unit has been exceeded. A maximum of 127
imported packages per load unit are permissible.

SIMOTION ST Structured Text
358 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

10009 The specified package is used in the unit, but it is not available on the device. This error message occurs
when you compile with the "implicit package utilization" option and have programmed a USEPACKAGE
statement that has a different content than the packages specified on the device.

10010 The specified package is used in Unit a but not in Unit b. This error message occurs when different packages
have been specified with USEPACKAGE in units that reference each other with USES. Correct the
USEPACKAGE statements.

10011 The specified unit is used directly or indirectly by itself via one or more units. Correct the USES statements.

10012 The specified unit is imported directly or indirectly into several units in different compilation versions.
Recompile all units that reference the specified unit in the USES statement.

10013 The specified unit has not yet been compiled, or an error occurred during the last compilation. Compile this
unit first to ensure successful compilation.

10014 The type of specified technology object (TO) is not supported by the package specified previously during
compilation with USEPACKAGE. Use a package that contains the TO type.

10015 The maximum number of technology objects (TO) which can be referenced in a unit was exceeded. A
maximum of 65535 TOs can be referenced.

10016 The device type parameter is not available. If the unit to be compiled is not to be assigned to a device, use
the statement UNIT xx : dvtype;

10017 The device type has not been specified uniquely. In the unit, the statement UNIT xx : dvtype; specifies a
different device type than the one determined via the assignment of the unit to the device.

10018 The specified unit could not be found. Check whether the unit name is available in the PROGRAM container
of Workbench or whether the specified file is contained in the current working directory (only u7bt00ax -
command line).

10019 The specified technology package could not be found. Observe the preceding error outputs.

10020 Error occurred while loading the technology package. Observe further error outputs.

10021 The technology package is used in the specified source file, however, it is not selected on the device. Correct
the USEPACKAGE statement, or select the technology package on the device.

10022 The specified technology package is being used with different versions. Correct the settings for the
technology package selection on the device and, if required, in the library. Only one version of a technology
package can be used on a device.

10030 The device type has not been specified uniquely. In the unit, the statement UNIT xx : dvtype; specifies a
different device type than the one determined via the assignment of the unit to the library container.

10031 The specified library is used directly or indirectly by itself via one or more libraries. Correct the USELIB
statements.

10032 The specified library could not be found. Check your project.

10033 A recursion was detected on loading the library. The specified library has already been loaded with USELIB
and cannot be specified a second time.

10034 The specified library is not completely compiled. Possible causes:

e The library has not yet been compiled.
e The library has not been compiled for all device types specified for the library container (e.g. in project-
wide compilation).
e An error occurred in the last compilation.
First compile this library individually (accept and compile).
10035 The specified library could not be found. Check whether the library name is available in the Workbench

project or whether the specified file is contained in the current working directory (only u7bt00ax command
line).

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 359

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

10036 The specified package is used in the source file, but it is not available in the library. Libraries are generally
compiled against the package versions specified in the library container. You have programmed a
USEPACKAGE statement that has a different content than the packages specified in the library. Either select
the correct package version or remove the USEPACKAGE statement from the source file.

10037 The code variant for the current device type is not selected for the specified library. This means this library

cannot be used. Activate the code variant for this library.

10100 The specified type of a technology object is contained in several packages that were referenced by the

source file. Please choose the technology package that meets your requirements.

10101 The specified technology object is not compatible with the types of technology objects supported by the

loaded packages Update the package or change the type of technology object.
A.210 Implementation restrictions
Table A-18 Implementation restrictions (15001 — 15200)

Error Description

15001 The specified construct is not supported by the current version of the compiler.

15002 The currently selected device does not support the specified function. Select a different device version if you
want to use this function. To do so, replace the CPU in the hardware catalog and, if necessary, update the
firmware.

15003 The specified identifier is a keyword that is not supported and therefore cannot be used as user-specific in order
to ensure compatibility with later compiler versions.

15004 The specified identifier denotes a standard function that is not supported and cannot be used as user-specific
identifier in order to ensure compatibility with later compiler versions.

15005 The specified identifier denotes a non-supported standard function and cannot be used as user-specified
identifier in order to ensure compatibility with later compiler versions.

15006 The specified construct can only be used in source files generated with MCC. Usage in ST is not possible.

15007 A source/library/package is used in the implementation section either directly or indirectly without specifying a
namespace. In the interface section, it is used with a namespace. Solve this conflict by specifying a namespace
in the interface section for the specified source/library/package.

15070 The specified construct does not conform to the language standard, however, for compatibility reasons, is not
supported for old platforms. Convert the usage to the specified alternative.

15152 A USES, USELIB, or USEPACKAGE statement was found in a source file section hidden by conditional
compilation. This is illegal. Source file sections that contain these statements cannot be complied conditionally.

15153 The specified definition is not considered during code generation. It is not possible to define keywords
differently.

15200 The specification of a bit offset for a bitstring variable requires the "Permit language extensions" compiler option
(-C lang_ext).

SIMOTION ST Structured Text
360 Programming and Operating Manual, 08/2008

Appendix

A.2.11

A.2 Compiler Error Messages and Remedies

Warnings

Table A-19 Warnings (16001 - 16602)

Error Description
16001 (Warning class: 0)
Only in conjunction with the "Selective Linking" compiler option. The specified function, the function block, or
the program are neither exported nor called in the current unit. No code is generated.
16002 (Warning class: 0)
Only in conjunction with the "Selective Linking" compiler option. The specified unit does not contain any
exported PROGRAM nor any task link. No code is generated for the unit.
16003 (Warning class: 2)
The operands of the comparison operation do not contain any explicit type definition. The data type listed in
the comparison can be seen in the warning message issued. Specify the data type of the used constants
explicitly with <type>#<value>.
16004 (Warning class: 2)
The specified type conversion may cause the variable value to change due to the reduced display width or
inadequate accuracy of the target data type.
16005 (Warning class: 2)
During type conversion, the dependency of the variable value can cause the sign to change.
16006 (Warning class: 2)
The specified value will be rounded to the next displayable value due to insufficient display width.
16007 (Warning class: 2)
A loss of accuracy occurred during type conversion. Not all decimal places are considered.
16008 (Warning class: 2)
A loss of accuracy occurred during initialization of the specified variables. The constant will be converted to the
specified data type. Not all decimal places are considered.
16009 (Warning class: 0)
Only in connection with compiler option Selective Linking. The specified unit does not contain any exported
PROGRAMs or any task linking. Unable to access unit code. Unable to call relevant POU.
16010 (Warning class: 0)
Specified program not exported to unit; therefore unable to use it in configuration of the execution level.
16011 (Warning class: 0)
The source file does not contain any exported global variables. No data are loaded to the target system.
16012 (Warning class: 0)
The specified source file name was taken over from the PROGRAMS container of the selected device. The
identifier of the source file in the UNIT statement was ignored.
16013 (Warning class: 2)
Because of the marshalling function, the specified data type is not portably convertible. Only use SIMOTION
devices in connection with this data type, or perform an explicit conversion of the data type.
16014 (Warning class: 2)

With the specified operation, a data type conversion is performed between signed and unsigned. Because the
bit string is adopted in this case, the resulting numerical value can differ from the specified value.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 361

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

16015 (Warning class: 2)
For the assignment of the character string constants to the variables, only part of the character string
constants is transferred, because the length of the variable is insufficient to accept all characters.

16016 (Warning class: 2)
The operands in the expression do not contain any explicit type definition. The data type of the operation is
determined by specifying the values. The resulting data type in which the expression is calculated can be seen
in the issued warning message. To define the data type:
e Specify the data type of the used constants explicitly with <type>#<value>.
e Use an explicit data type conversion.

16017 (Warning class: 2)
The operands in the expression contain only constants. The data type of the operation can be determined by
specifying the data type (in the form <type>#<value>) or explicit data type conversion.
This output is used for finding problems, in particular, for the use of symbolic constants, because the data type
of the operation cannot normally be determined easily.

16018 (Warning class: 2)
The data type of the comparison operation is defined using the value of a constant that has a larger value
range than the contained variable. The comparison is performed with the data type of the constant.

16020 (Warning class: 1)
The declaration hides the specified identifier, which has been globally defined in its own source file or an
imported source file. Access to the global identifier is no longer possible from the POU where this identifier is
declared locally.

16021 (Warning class: 1)
The declaration hides the specified identifier, which is defined on the device. You can access the global device
identifier with _device.<name>.

16022 (Warning class: 1)
The declaration hides the specified identifier, which is defined in the project (e.g. technology object or device).
You can access the global project identifier with _project.<name>.

16023 (Warning class: 1)
The declaration hides the specified identifier for the data type of a technology object. Access to the data type
identifier is no longer possible.

16024 (Warning class: 1)
The declaration hides the access to the technology object on the device. You can access this TO with
_to.<name>.

16025 (Warning class: 1)
The declaration hides the IEC standard function with the identical name. Access to this function is no longer
possible in the current context.

16026 (Warning class: 1)
The specified identifier is reserved by SIEMENS for potential extensions. The use of this identifier can cause
compiler errors in later versions. If you want to avoid this, change this identifier.

16030 (Warning class: 1)
A label has been specified several times in a CASE statement. Only the first label is ever evaluated. Other
specifications have no effect.

16102 (Warning class: 3)
The option for output of code for the program status diagnosis function is ignored because no debug
information was generated. Output of debug information was deactivated via compiler options.

SIMOTION ST Structured Text
362 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

Error Description
16103 (Warning class: 3)
The option for outputting code at the library for the program status diagnosis function is ignored. The code for
program status is generated as defined in the option in the individual source files.
16150 (Warning class: 7)
A new definition has been made for the specified identifier. Consequently, the previous definition is invalid.
This warning enables the work of the preprocessor to be tracked.
16151 (Warning class: 7)
An attempt has been made to delete the definition of the specified identifier with #undef. However, the
identifier is not defined or the definition is already deleted.
This warning enables the work of the preprocessor to be tracked.
16152 (Warning class: 7)
The specified definition is not considered during code generation. The cause for this can be that the
preprocessor is deactivated for the compiled source.
16153 (Warning class: 7)
The preprocessor is not active in the current source, even though preprocesssor statements are used. Activate
the preprocessor or remove the statements.
16170 (Warning class: -)
The definition from sources imported using USES are not considered during the code generation.
16171 (Warning class: -)
The definition from the specified sources imported using USES could not be loaded. Compile the specified
source file beforehand.
16200 (Warning class: 4)
The use of a semaphore requires a global variable to enable access to it from a different task. Local task
operations do not have to be blocked via semaphores.
16210 (Warning class: 4)
The basis of the exponential function (EXPT standard function or ** operator) is negative. The operation can
be executed at run time only under the following conditions:
1. It can be used on a device with a version of the SIMOTION kernel as of V4.1.
2. The exponent is an integer.
The ExecutionFaultTask will be initiated for non-integer exponents or for use on a device with a version of the
SIMOTION kernel up to V4.0. The program will be aborted here.
16220 (Warning class: 4)
The condition of an IF statement, WHILE statement or REPEAT statement is a constant expression.
16230 (Warning class: 4)
The expression with the specified values does not cause any change to the result; optimized code will be
created.
16240 (Warning class: 4)
The expression with the specified values exceeds the definition range of the operation. The result may be
incorrect.
16300 (Warning class: 5)
The auxiliary value has a data type that cannot be converted to the data type configured for the message.
16301 (Warning class: 5)

The specified auxiliary value is not evaluated during output of the message.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 363

Appendix

A.2 Compiler Error Messages and Remedies

Error Description

16302 (Warning class: 5)
The data type of the auxiliary value cannot be determined from the message configuration. The specified data
type is used.

16303 (Warning class: 5)
No auxiliary value has been specified for the function although the message configuration requires such a
value. A default value of the corresponding data type was added.

16304 (Warning class: 5)
An alarm accompanying value is specified using a constant or a constant expression. The resulting data type
of the alarm accompanying value can be seen in the issued warning message. To define the data type:
o Specify the data type of the used constants explicitly with <type>#<value>.
e Use an explicit data type conversion.

16400 (Warning class: 6)
A global variable has been declared in a library. This may mean that the library cannot be used more than
once.

16420 (Warning class: 6)
The return value has not been assigned within the function. If such a function is called, it returns a random
value.

16421 (Warning class: 6)
A variable that has neither been assigned nor read in the code has been declared.

16450 (Warning class: -)
A global variable has been created in the retentive memory range. This declaration is not permissible at the
specified position.

16451 (Warning class: -)
The initialization of large arrays with values other than 0 causes a high data volume in the controller. This
results in long load times as well as high memory utilization.

16452 (Warning class: -)
The specified program has a large quantity of instance data to be initialized. This can lead to a runtime
violation when the task is started because both the initialization code and the user code are being executed. In
particular, caution is advised in the case of SynchronousTasks.

16470 (Warning class: -)
The specified construct does not conform to the language standard, however, for compatibility reasons, is not
supported for old platforms. Convert the usage to the specified alternative.

16600 (Warning class: 6)
The specified variable is not contained in the initialization list. The default initialization value is used.

16601 (Warning class: 6)
The specified variable is not contained in the initialization list. The default initialization value is used.

16602 (Warning class: 6)
The specified variable is not contained in the initialization list. The default initialization value is used.

SIMOTION ST Structured Text
364 Programming and Operating Manual, 08/2008

Appendix

A.2 Compiler Error Messages and Remedies

A.2.12 Information
Table A-20 Information

Error Description

32010 (Warning class: 6)
The specified jump label identifier has been declared but not used.

32020 (Warning class: -)
The specified variable was declared globally in this source file or in another source file with the indicated data
type.
This information helps when searching for the cause of compilation errors. It is issued together with error
messages.

32021 (Warning class: -)
The specified variable was declared on the device as an I/O variable, a global device variable, or a system
variable.
This information helps when searching for the cause of compilation errors. It is issued together with error
messages.

32022 (Warning class: -)
The specified variable was declared in the project as a global identifier.
This information helps when searching for the cause of compilation errors. It is issued together with error
messages.

32023 (Warning class: -)
Until now, no valid declaration has been found for the specified identifier.
This information is issued together with error messages.

32024 (Warning class: 0)
The specified variable has been declared as a global identifier in the current unit or in an importing unit.
This information helps when searching for the cause of compilation errors. It is issued together with error
messages.

32030 (Warning class: 0)
The specified array initialization does not conform to IEC 61131-3. For portable programs, the array initialization
values should be placed into square brackets. Example of field initialization in compliance with the standard:
x : ARRAY [0 to 1] OF INT :=[1, 2J;

32050 (Warning class: 0)
The maximum size that can be reached via an HMI is 65536 bytes. This limit has been exceeded with the
specified variable. All subsequent variables cannot be reached either.

32300 (Warning class: 1)
A label has been specified several times in a CASE statement. Only the first label is ever evaluated. Other
specifications have no effect.

32650 (Warning class: 7)
The specified identifier will be replaced thereafter by the output text.
This information enables the work of the preprocessor to be tracked.

32651 (Warning class: 7)

The definition of the specified identifier has been deleted with #undef.
This information enables the work of the preprocessor to be tracked.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 365

Appendix
A.2 Compiler Error Messages and Remedies

Error Description

32652 (Warning class: 7)
The identifier will be used with the specified replacement text in the source file. Compilation takes place with the
replacement text.

This information enables the work of the preprocessor to be tracked.
32653 (Warning class: 7)

The specified identifier will be replaced thereafter by the output text. This information appears if additional
replacements are loaded with a USES statement.

This information enables the work of the preprocessor to be tracked.

SIMOTION ST Structured Text
366 Programming and Operating Manual, 08/2008

Appendix

A.3 Template for Example Unit

A.3 Template for Example Unit

A31 Preliminary information

This appendix presents a comprehensive annotated template that you can call in the online

Help. You can use it as a template for a new ST source file.

[mm e
// Notes for the INITIALIZATION of the user data are available

// at the end of the template

[
INTERFACE

// All statements added between INTERFACE and END INTERFACE/

// Keywords are used to define which source contents

// (variables, functions, function blocks, etc.) also in other

// sources (units) are available or exported.

USEPACKAGE cam;

// The technology packages to be used are known here and thus

// made usable in the source. Technology object (TO)-specific

// Commands can be used in this UNIT only when the

// appropriate package has been included.

// If a source file that uses USEPACKAGE cam is integrated via USES,
// it will be "inherited". USEPACKAGE can then be omitted.

// The package used in this example is "cam". However, other

// technology packages can also be used (see documentation).

// USELIB testlib;

// If library functions are to be used in the source file, they must be made

// known in the source, too. If the library

// with the name "testlib" does not exist in the project,
// the error message

// "Error 10035, "testlib.lib"™ library could not be loaded"
// "Error 10032, "testlib" library could not be loaded"

// will be output.

// If libraries are not being used, this line can be

// deleted..

// USES header;

// USES is used to import contents exported from a different source

// (NAME here "header") and made usable in "Template".

// If the source with the name "header" does not exist in the project,
// the error message

// "Error 10018, "header" source could not be loaded"

// will be output. In this case, the NAME of an existing source file must be

// used in place of "header".

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

367

Appendix

A.3 Template for Example Unit

A.3.2 Type definition in the interface

// R I b S b I b I S Sh I S b I b b S b S Sh I S b S b b dh S S b S b b Sb S dh b Sb b b Sb S 2b I Sb b S 2

// * Type definition in the INTERFACE *

// R I b S b I 2b E S Sb I S 2h I b b S b S Sh b S b S b b dh S 2 Sh b b Sh S dh b Sb b S Sb S 2b I 2b db S 2

VAR GLOBAL CONSTANT

PI : REAL := 3.1415;
ARRAY MAX : INT := 3;
END VAR

// Declaration of a global constant. In the source file
// no other value can be assigned to the identifier.

// User defined variable types (UDT) are
// defined between TYPE and END TYPE.
TYPE
arrayldim : ARRAY [0..ARRAY MAX] OF INT;
// Definition of a one-dimensional array with four array elements from
// type INT under the name "arrayldim". With "arrayldim" as the data type
// in all source file segments, one-dimensional arrays can now
// be declared by type INT.

array2dim : ARRAY [0..3] OF arrayldim;

// A two-dimensional array is an array of one-dimensional arrays.
// Here a two-dimensional field with 16 elements occurs

// of the type INT under the name "array2dim"

enumTrafficLight : (RED, YELLOW, GREEN) ;

// Definition of enumerator "enumTrafficLight" as a

// user-defined variable type. Variables of this type can
// only accept the values "RED", "YELLOW", and "GREEN".

structCollection : STRUCT
toAxisX : posaxis;
aInStructldim : arrayldim;
eTrafficInStruct : enumTrafficLight;
iCounter : INT;
bStatus : WORD;
END_ STRUCT;
// A user-defined structure is created here. It is possible to
// combine elementary data types (here INT and WORD) or already defined
// user data types (here "arrayldim" and "enumTrafficLight") into
// one structure. In addition, types
// of technology objects can also be used.
// In the example, the structure contains an element of
// a positioning axis (posAxis).
// In the definition, make certain to sort the variables
// by size in increasing sequence
// (ARRAY, STRUCT, LREAL, DWORD, INT, BOOL ...)

arrayOfStruct : ARRAY [0..5] OF structCollection;

// Nesting is also possible. The type "arrayOfStruct"

// contains a field comprising six elements of type "structCollection"
END TYPE

SIMOTION ST Structured Text
368 Programming and Operating Manual, 08/2008

Appendix
A.3 Template for Example Unit

A3.3 Variable declaration in the interface

// R R i b b I b e b S S b S b I S S db b Sb b b b e S b S Sb b S b S b b Sh d Sb b b 2h R S b b Sb 2b S 2b b4

// * Variable declaration in the INTERFACE *

// R R I b i b b I I e b S b S b I Sh S Sb b Sb b b IR I S b S Sb S b 2 b S b Sb b I 2b R Sh b S db S 2b b4

VAR GLOBAL // In the user memory of the UNIT.
// Also visible using HMI services.

g _aMyArray : ARRAY [0..11] OF REAL := [3 (2(4), 2(18))1];

// Example of a declaration of a one-dimensional array without

// previous type declaration. The initialization performed here is
// read as follows:

// Two elements each are initialized with the value 4,

// two elements with the value 18. This pattern is used in the field

// "g_aMyArray" three times in succession.
// The field elements are thus assigned as follows:
// 4, 4, 18, 18, 4, 4, 18, 18, 4, 4, 18, 18.

g_aMy2dim : array2dim;
// Example of a declaration of a two-dimensional array

g _aMyldim : arrayldim;
// Example of a declaration of a one-dimensional array with
// use of a type declaration.

g _sMyStruct : structCollection;
// Variable of the type or with the structure of
// user_struct.

g _aMyArrayOfStruct : arrayOfStruct;
// The variable generated here contains a field from
// structural elements as declared in section TYPE/END TYPE

g tMyTime : TIME := T#0d 1lh 5m 17s 4ms;
// ...as elementary time types and derived data types (see below).

g eMyTraffic : enumTrafficLight := RED;
// An enumerator of type "enumTrafficLight" is created here and
// assigned the value "RED".

g _iMyInt : INT := -17;
// Variables of an elementary numerical data type can
// also be declared in variable declarations...

END VAR

VAR GLOBAL RETAIN

END VAR

// The variables declared with the add-on RETAIN are

// stored in the RETAIN data area of the hardware platform used and

// are therefore safe from network failure.

// The declaration of VAR, VAR CONSTANT, VAR TEMP, VAR INPUT, VAR OUTPUT

// and VAR IN OUT is not permissible here.

// Variables that are defined in this section and thus exported

// can be reimported by means of the USES "template" into another source file (UNIT)

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 369

Appendix

A.3 Template for Example Unit

FUNCTION FC myFirst;
FUNCTION BLOCK FB myFirst;
PROGRAM myPRG;

//
//

The function blocks (FBs),

functions (FCs) and programs defined in the implementation part are exported here

interface part,
so that they can be used in other units.

Non-exported FBs and FCs can only be used in this source file

("information hiding", placing in the interface only
what other units absolutely need).

A program that has not been exported cannot be assigned to any TASK

deleted..

END INTERFACE

370

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Appendix

A.3 Template for Example Unit

A3.4 Implementation

// R R b I b b S b S b S b b S b S b S b S R I Sh b S Sb E Sb b I S S b Sb b b 2h S 2b i Sb dh S 2b 4

// * IMPLEMENTATION section *

// R R S b i b b S b S b S S b S b S b S b S SR I S b b Sb S Sb b I S S Sb Sb b b 2h I Sh 2b S Sb 2h S 2b 4

IMPLEMENTATION
// In the IMPLEMENTATION section of a unit, the executable code sections
// are stored in various program organization units (POUs) .
// A POU can be a program, FC, or FB.

VAR GLOBAL CONSTANT
END VAR

TYPE
END TYPE
// The type definition can also be made in the IMPLEMENTATION section.
// However, this definition cannot be imported in another source file.
The type definition can, however, be used for variables
// in all POUs of the source file "Template". The definition of types must
// be performed before the declaration of a variable.
VAR GLOBAL // In the user memory of the UNIT
g _boDigInputl : BOOL;
// Boolean variable for "EXPRESSION" example (see below) .
END_ VAR

VAR GLOBAL RETAIN

END VAR

// The variables declared with the add-on RETAIN are

// stored in the RETAIN data area of the hardware platform used and

// are therefore safe from network failure.

// Variable declaration in the IMPLEMENTATION section.

// The declaration of VAR, VAR CONSTANT, VAR TEMP, VAR INPUT, VAR OUTPUT
// and VAR IN OUT is not permissible here.

EXPRESSION xCond
xCond := g boDigInputl;
END EXPRESSION
// Definition of an EXPRESSION.
// An EXPRESSION is a special function case, which recognizes only the
// return values TRUE and FALSE. It is used in conjunction with the
// statement WAITFORCONDITON (see myPRG) and should only be used
// if the program is executed as part of
// a MotionTask. If "dig input 1" (usual in a digital input or a
// condition in the program) takes on the value 1, the return value of the
// EXPRESSION is TRUE.

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 371

Appendix

A.3 Template for Example Unit

A.3.5 Function

// R I b S b I b I S Sh I S b I b b S b S Sh I S b S b b dh S S b S b b Sb S dh b Sb b b Sb S 2b I Sb b S 2

// * FUNCTION *

// R I b S b I 2b E S Sb I S 2h I b b S b S Sh b S b S b b dh S 2 Sh b b Sh S dh b Sb b S Sb S 2b I 2b db S 2

// The declaration of an FB or FC must be placed in the source file
// before the actual use (the call), so that the code of the
// block is already known to the calling point.

FUNCTION FC myFirst : INT
// The statement section of the POU FUNCTION begins here. The return value
// of the function has the type integer in this case.
// The stack of the calling TASK is initialized on each call.
The return value is located on the stack and is
// written by the FUNCTION.

VAR CONSTANT
END VAR

TYPE

END TYPE

// The type declaration can also be made in POUs. The
// basic difference is the validity of the

// type declaration. A type declared in a POU can only
// be used for variables within associated POU.

VAR INPUT // In the stack of the calling TASK, will be placed on
// stack on call, assignment optional.

END VAR
VAR // In the stack of the calling task
// 1s used in FUNCTION.

END VAR

// Variable declaration in an FC.

// The declaration of VAR TEMP, VAR GLOBAL, VAR GLOBAL CONSTANT,
// VAR GLOBAL RETAIN, VAR OUTPUT and VAR IN OUT is not

// permissible here.

// The use of unit-global variables for data acceptance in FCs

// and FBs is the fastest option for the runtime. The use

// of the input parameters VAR INPUT and the return via the

// return value is slower, since the values are copied respectively.

// Comment: Variables declared with VAR and VAR CONSTANT are
// temporary. On the next call, the contents from the latest
// call are no longer available, in contrast to the FB.

// KA KK AR KA AR A AR AR A AR A AR AR A AR A AR AR A AR A A A AR A Ak kA kK

// * Area for FC code or statements *
// **)

// Code is in the user memory.
g _eMyTraffic := YELLOW; // e.g. change the traffic light.

FC myFirst := 17;
// In this example, the function returns the value "17" to the

// calling program.

END FUNCTION

SIMOTION ST Structured Text
372 Programming and Operating Manual, 08/2008

Appendix

A3.6

A.3 Template for Example Unit

Function block

R R b I b b S b S b S b b S b S b S b S R I Sh b S Sb E Sb b I S S b Sb b b 2h S 2b i Sb dh S 2b 4

* FUNCTION BLOCK *

R R S b i b b S b S b S S b S b S b S b S SR I S b b Sb S Sb b I S S Sb Sb b b 2h I Sh 2b S Sb 2h S 2b 4

The declaration of an FB or FC must be placed in the source file

before the actual use (the call), so that the code of the
block is already known to the calling point.

FUNCTION BLOCK FB myFirst

// The statement section of the FUNCTION BLOCK POU begins here.

// Instance data are dependent where the instance is formed

// (see comments at the template end) in the user memory of UNIT
// or TASK and are initialized with STOP->RUN or starting the TASK

// The pointer to the instance data is transferred during the call.

VAR CONSTANT

END VAR
// Variables declared with VAR and VAR CONSTANT are
// static, i.e., on the next block call, their contents remain

// available and valid.

TYPE

END TYPE

// The type definition can also be made in POUs. The
// basic difference is the validity of the

// Type definition. A type defined in a POU can only
// be used for variables within associated POU.

VAR INPUT // In the user memory of the UNIT or TASK,
// assignment optional on call.
END VAR

VAR IN OUT // In the user memory of the UNIT or TASK,
// reference must be assigned on call.

END VAR

VAR _OUTPUT // In the user memory of the UNIT or TASK.

END VAR

VAR // In the user memory of the UNIT or TASK,
// can be used in the FB.

END VAR

VAR TEMP // In the stack of the calling task,
// is initialized on each call.

END VAR

// Variable declaration in an FB.
// The declaration of VAR GLOBAL, VAR GLOBAL CONSTANT and
// VAR _GLOBAL RETAIN is not permissible here.

// R R R R b b b R I b b b I b b b b b b b h b E b b b b b b b b b I b b b I i

// * Area for FB code or statements *
// hAAkhhhk kA A hkhhkhk Ak hkhkhAhkhhkkhkhAkrhhkhkhkhkhhkkhkhkrhkhkkhkrhhhkk,*x*x*

g _eMyTraffic := GREEN; // e.g. change the traffic light.

END_ FUNCTION BLOCK

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 373

Appendix

A.3 Template for Example Unit

A.3.7 Program

// R i S e S b I 2h S Ib b S b I 2E S b b b S S b Sh b S SE S S 2 Sb b S Ih S 2b b Sh b Sh b b S b S 2b 4

// * PROGRAM *

// R Rt e S b I b S Ib b S 2h S Sb S b b S S I b Sh b S SE S Sh dh I Sb R S Ih S db b Sh b Sh b b Sh 2b S 2b S

PROGRAM myPRG
// The statement section of the POU PROGRAM begins here.

VAR CONSTANT
END VAR

TYPE

END TYPE

// The type definition can also be made in POUs. The

// basic difference is the validity of the

// Type definition. A type defined in a POU can only

// be used for variables within associated POU.

VAR // In the user memory of the TASK.
instFBMyFirst : FB myFirst;
// In order to be able to call an FB, an area for static
// variables (forming an instance) must be generated. This has to do with
// the "memory" of the FB.

retFCMyFirst : INT;
// Variable for the return value of the function.
END_ VAR

VAR TEMP // In the stack of the task, initialized in each pass.
END VAR

// Variable declaration in a PROGRAM.

// The declaration of VAR GLOBAL, VAR GLOBAL CONSTANT,

// VAR_GLOBAL RETAIN, VAR INPUT, VAR_OUTPUT and VAR_IN_OUT

// 1is not permissible here.

// Comment: Whether the local variables declared via VAR
// are temporary variables depends on the task context in which the
// PROGRAM is used.

// In non-cyclic tasks (StartupTask, ShutdownTask, MotionTasks,
// SystemInterruptTasks and UserInterruptTasks) the previous

// contents of VAR and VAR TEMP are no longer available.

// The variables are thus temporary.

//
// With other cyclic tasks (BackgroundTask, IPOsynchronousTask,
// IPOsynchronousTask 2 and TimerInterruptTasks), the contents

// of variables declared in the VAR section remain the same
// for the following run. The variables are thus static.
// Variables from VAR TEMP are always temporary.

instFBMyFirst ();
// FB call with a valid instance.

retFCMyFirst := FC myFirst ();
// FC call and assignment of return value.

SIMOTION ST Structured Text
374 Programming and Operating Manual, 08/2008

Appendix

A.3 Template for Example Unit

WAITFORCONDITION xCond WITH TRUE DO

// The statements programmed here come immediately for
// execution if the condition "xcond" defined in the associated
// EXPRESSION is logically true.

END WAITFORCONDITION;

// WAITFORCONDITION is generally used only in MotionTasks.

These remain in the location and the
// condition defined in the EXPRESSION is checked with high priority.

END PROGRAM

END_ IMPLEMENTATION

/= m e -
A.3.8 Notes on initialization
// INSTRUCTION FOR INITIALIZATION OF USER DATA
// * User data (variables from elementary data types, structures, and arrays)
// * are initialized as different times. The time
// * depends on the location (i.e., memory area) of the data.
// * A distinction is always made between the main memory of a task (stack) and
// * in the user memory of the TASK. There is a user memory
// * for a TASK and for a UNIT.
// Data in the main memory of a task (stack):
//
// Each task has a reserved memory for stack data (parameters for
// function calls, temporary variables). The stack size of a TASK is
// calculated by the compiler and can be influenced by the user in the
// execution system under task configuration (Reserve for Download in the RUN).
// * The main memory of a TASK (stack) contains the following data:
/7 - VAR of FUNCTIONs
// - VAR TEMP of FUNCTION BLOCKs and PROGRAMs
// - VAR _INPUT and return value of FUNCTIONs
// * These are initialized at each call (delete / set to zero and
// from the program, if necessary).
// The user memory (heap) is managed separately for each UNIT and for each
// TASK:
//
// * The user memory of a UNIT contains the following data:
// - VAR_GLOBAL from INTERFACE and IMPLEMENTATION
// * These are initialized (delete / set to zero and write initial values
// from the program, if necessary):
// - During startup
// - During loading (if initialization of all non-retentive data is
// selected)
//
// * The user memory of a TASK contains the following data:
// VAR of PROGRAMs
// * These are initialized (delete / set to zero and write initial values
// from the program, if necessary):
// - For cyclic tasks, once when STOP->RUN
// - For non-cyclic tasks, at start of task

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008 375

Appendix

A.3 Template for Example Unit

//

// * The instance data of FUNCTION BLOCKs (VAR INPUT, VAR OUTPUT,

// VAR IN OUT (reference), VAR) are dependent on where the instance of the FB

// is formed, in the user memory of a UNIT or TASK.

// Instantiation of the FB in

// - VAR GLOBAL: Instance is located in the user memory of the UNIT

// - VAR in the PROGRAM: Instance is located in the user memory of the TASK
// - VAR in the FB: Instance is located in the user memory according to
// higher-level FB

// * The instance data are initialized as described above.

// Which variable type is located in which data area can be obtained in

// comments in the template.
et bttt bl

SIMOTION ST Structured Text
376 Programming and Operating Manual, 08/2008

Index

-, 123

#

#define, 245
#else, 245
#endif, 245
#ifdef, 245
#ifndef, 245
#undef, 245

*,123
**,123

/,123

5, 95,105
=, 113, 1563, 154

_additionObjectType, 102
_alarm, 235
_camTrackType, 102
_controllerObjectType, 102
_device, 226, 235
_direct, 211, 214, 226, 235
_fixedGearType, 102
_formulaObjectType, 102
_getSafeValue
Application, 226
_project, 235
_sensorType, 102

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

_setSafeValue
Application, 226
_task, 235
_to, 235
_U7_PoeBId_CompilerOption, 247

+, 123

<, 125
<=,125
<> 125

=125
=>, 155

>, 125
>=,125

1

-1.#IND, 260, 262
1.#INF, 260, 262
-1.#INF, 260
-1.#INF, 262
1.#QNAN, 260, 262
-1.#QNAN, 260
-1.#QNAN, 262

A

Absolute identifier
Overview, 297

Access times
Parameter, 156

Index

ANY, 92

ANY_BIT, 92
ANY_DATE, 92
ANY_ELEMENTARY, 92
ANY_INT, 92
ANY_NUM, 92
ANY_REAL, 92
ANYOBJECT, 102
Arithmetic operators, 122

ARRAY data type specification

Error source, 97
Arrays

Data type, 97

Value assignments, 118
Attribute

Compiler option, 247

B

Basic elements
Of ST, 73
Basic functions, 122
Bit constants, 84
Bit data types, 90
Blocklnit_OnChange, 248
Blocklnit_OnDeviceRun, 248
Blocks, 72
BOOL, 90
Boolean data, 84
Branches
Syntax, 345
Breakpoint, 271
Activating, 285
Call path, 279, 282
Call stack, 287
Deactivating, 287
remove, 276
Set, 276
Toolbar, 278
BYTE, 90

C

Call path
Breakpoint, 279, 282
Call stack, 287
Program run, 263
Program status, 268
camType, 102
CASE statement
Description, 131
Character set, 73, 294

378

Code attributes, 241
Commands
Overview of the basic system, 299
ST programming language overview, 81
Comments, 88
Source file section, 88
Syntax, 316
Compiler, 64
Attribute, 247
Correcting errors, 44, 65
Declaration errors, 351
Declaration errors in type declaration, 352
Error when linking a source file, 358
Errors while loading the interface of another UNIT
or technology package, 358
File access errors, 350
Implementation restrictions, 360
Information, 365
Scanner errors, 350
Setting, 44
Start, 64
starting, 44
Syntax errors, errors in expression, 357
Warnings, 361
Compiler option, 44, 50
Compiling
Library, 227
Compound data types, 97, 100
Constant block
Syntax, 323
Constants
Bit, 84
Data types for constants, 89
Date and time, syntax, 313
Digit strings, syntax, 312
Floating-point number, 83
Formatting characters and separators, 296
Globally valid, 186
Integer, 82
Literals, syntax, 308
Symbolic names, 111
Time specifications, 91
Unit constants, 186
Control statements, 130
CPU memory access
Identifiers for process image access, 297
Variable model, 184
Cross-reference list, 237
Displayed data, 238
Single step monitoring, 238
TSl#dwuser_1, 238
TSl#dwuser_2, 238
Cyclic program execution

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Index

Effect on I/O access, 211, 214, 220
Effect on variable initialization, 200

D

Data model, 184

Data type specification
ARRAY, 97
elementary, 96
Enumerator, 99

STRUCT, 100
Data types
ARRAY, 97

Bit data type, 90
Conversions, 141
Derivation of simple types, 96
elementary, 90
Elements, syntax, 331
Enumerator, 99
Enumerators, 99
Explicit conversions, 144
Implicit conversions, 142
Inheritance, 103
Numeric, 90
STRING, 91
STRUCT, 100
Structure, 100
Syntax, 330
Technology object, 101
Time, 91
TYPE, 95
User-defined, 95
User-defined, syntax, 333
DATE, 91
DATE_AND_TIME, 91
Debug mode, 253, 272
Declaration
Parameter, 106
Variables, 106
Declaration section
Syntax, 321
Declarations
Syntax, 326
Derivation of simple data types, 96
Derived data type
Enumerator, 99
Derived data type
ARRAY, 97
Enumerator, 99
Field, 97
Derived data type
Structure, 100

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Derived data type
STRUCT, 100
DINT, 90
DINT#MAX, 92
DINT#MIN, 92
Direct access, 211, 214
Features, 212
Variable model, 184
Download
Effect on variable initialization, 200
driveAxis, 102
DT, 91
DWORD, 90

E

Editor, 25
Example for program, 62
Operation, 63
Toolbar, 43
Elementary data types
Overview, 90
Enumerator data types, 99
Enumerators, 99
Error
ARRAY data type specification, 97
FB or FC call, 159
Error messages
Declaration errors, 351
Declaration errors in type declaration, 352
Error when linking a source file, 358
Errors while loading the interface of another UNIT
or technology package, 358
File access errors, 350
Implementation restrictions, 360
Information, 365
Scanner errors, 350
Syntax errors, errors in expression, 357
Warnings, 361
Example, complete
FBs and FCs, 161
Rotate bit in output byte, 59
ST source file (template), 367
User-defined data types, 101
Using data types of TOs, 103
EXIT statement
Description, 138
Explicit data type conversions, 144
Exponent
Description, 83
Exponentiation, 123
Export

379

Index

ST source file, 53 Instances, 157
EXPRESSION Local variables, 152

Description, 174 Names, 157

Syntax, 166 Output parameters, 152
Logic expression; bit-serial expression Source file section, 173

logic; expressions: bit-serial, 127 Structure, 149
Expressions Syntax, 149

Arithmetic, 122

Logic, 129

Relational expressions, 125, 129 G

Rules for formulation, 120, 129

externalEncoderType, 102 Global device data

Definition, 193
In the data model, 184

F Global user data
Definition, 193

FB, 147 Variable model, 184

FB/FC variables Global variable block
Definition, 189 See Unit variables, 187
Variable model, 184 GOTO statement, 250

FC, 147

File
See Source file, 86 H

Floating-point number
Data types, 90
Description, 83
Notation, 83

followingAxis, 102

followingObjectType, 102

Hardware

Setting up, 61
Hiding validity ranges, 231
HMI_Export, 247

FOR statement |
Description, 134

Formatting characters, 294 I/O variable

Function, 147 Creating, 214, 225
Call path, 268 Direct access, 211, 214
Calling, 156 Process image, 211, 214
defining, 148 Process image of the BackgroundTask, 221
Error sources during a call, 159 Identifier
Example, 161 Predefined, 297
Input parameters, 152 Reserved for ST, 81, 299
Local variables, 152 Rules for formulating, 73
Source file section, 172 Syntax, 73
Structure, 148 Identifiers
Syntax, 148 Syntax, 307

Function block, 147 IF statement
Call path, 268 Description, 130
Call, syntax, 158 Implementation
Calling, 157 Source file section, 171
defining, 149 Implicit data type conversions, 142
Difference to the FC, 161 Import
Error sources during a call, 159 ST source file, 54
Example, 161 In/out assignment
In/out parameter, 152 Syntax, 155
Input parameters, 152 In/out parameter

SIMOTION ST Structured Text
380 Programming and Operating Manual, 08/2008

Index

Function block, 152
Transfer, 154
Inheritance
During import/export, 182
For technology objects, 103
Initialization
Syntax, 328

Time of the variable initialization, 200

Input assignment
Syntax, 153
Input parameters
Access in the function block, 159
Function, 152
Function block, 152
Transfer, 153
Instance declaration of FB
Syntax, 157
Instruction
Source file section, 87
INT, 90
INT#MAX, 92
INT#MIN, 92
Integer
Data types, 90
Description, 82
Notation, 82
Integer number
See Integer, 82
Interface
Source file section, 170

J

Jump labels
Syntax, 326

K

Key combination, 27
Keyboard shortcuts, 27
Know-how protection
Libraries, 229
Know-how Protection
Source files, 51

L

LABEL declaration, 250
Language description

Resources, 71, 291, 294
Library, 227

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Compiling, 227

Using, 230
Local data stack, 194, 199
Local variables

Variable model, 184
LREAL, 90

M

measuringlnputType, 102
Memory requirement, 194, 199
MOD, 123
Mode
Debug mode, 253, 272
Test mode, 253
Multi-element variables, 118

N

Name space
User-defined, 234
Names, 73
Namespace
Predefined, 235
New
I/O variable, 214, 225
Number systems
Notation, 83
Numbers
Data types for numbers, 89
Description, 82
Notation, 82
Numeric data types, 90

O

Operands
Syntax, 338
Operating mode
Process mode, 253
Test mode, 266
Operators, 298
Priority, 129
Relational operators, 125
Syntax, 341
Output parameters
Access in the function block, 159
Function block, 152
Transfer, 155
outputCamType, 102

381

Index

P

Parameter
Access times, 156
Block (syntax), 150
Declaration, 149
Declaration, general, 106
Function and function block, 149
Transfer (in/out parameter), 154
Transfer (input parameter), 153
Transfer (output parameter), 155
Transfer (principle), 153
Parameter fields
Syntax, 325
posAxis, 102
Pragma
Attribute, 247
Preprocessor statement, 244
Preprocessor
Activating, 45, 48
Controlling, 243
Preprocessor statement, 244
Using, 45, 48
Warning class, 49
Preprocessor statement
Example, 246
Printing
ST source file, 54
Process image
Features, 212
principle and use, 211, 220
Symbolic access, 223
Process image of the BackgroundTask, 211
Process image of the cyclic tasks, 211, 214
Process mode, 253
Program
Assigning tasks, 66
Call path, 268
Compiling, 64
Connecting to target system, 67
Creating (example), 62
Download, 69
Executing, 66, 70
Locating errors, 252
Source file section, 174
starting, 66, 70
Status (test tool), 265
Testing, 252
Program organization units
Source file section, 171
Syntax, 319
Program run, 263
Toolbar, 264

382

Program section

See Source file section, 169
Program structure, 239
Program structuring, 130
program variables

Definition, 189

In the data model, 188

Variable model, 184
Programming environment, 17
Project

Opening, 60
Prototypes, 179

R

REAL, 90
Real number
See Floating-point number, 83
Reference, 101
Reference data, 237
References, 5
Relational expressions, 125
REPEAT statement
Description, 137
Repetition statements and jump statements
Syntax, 347
Reserved identifiers, 75, 299
RETAIN, 186
Retentive variables
Definition, 188
Variable model, 184
RETURN statement
Description, 138
Rules
Formatted, 291, 307
Semantics, 72
Unformatted, 293, 307
RUN
Effect on variable initialization, 200

S

SCOUT Workbench > See Workbench, 17
sections

Syntax, 317
Separators, 294
Sequential program execution

Effect on I/O access, 211, 214

Effect on variable initialization, 200
Setting

Compiler, 44
Shortcuts, 27

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Index

Simple data types
Derivation, 96
Single step monitoring
Cross-reference list, 238
Single-element variables, 114
SINT, 90
SINT#MAX, 92
SINT#MIN, 92
Source file
Structure, 86
Source file section, 169
Data type declaration, 176
Declaration section, 175
Function, 172
Function block, 173
Implementation, 171
Instruction, 87
Interface, 170
Program, 174
Program organization units, 171
Statement section, 176
Unit statement, 179
Variable declaration, 177
ST compiler. See Compiler, 44
ST editor, 25
ST source file
exporting, 53
Importing, 54
Printing, 54
See Source file, 86
Template (example), 367
ST source file section
See Source file section, 169
Standard functions, 122
Statement
Source file section, 176
Statement section
Syntax, 335
Status
Program (test tool), 265
STOP to RUN

Effect on variable initialization, 200

STRING, 91

assignment, 114

Edit, 115

Element, 115

Syntax diagram, 91
StructAlarmld, 93
STRUCTALARMID#NIL, 93
StructTaskld, 93
STRUCTTASKID#NIL, 93
Structured variables, 118
Structures

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

Syntax, 318

Symbol Browser, 257

Symbolic access to I/O address space

Process image, 223

Syntax diagram, 71
System functions

Inheritance, 103

System variables

T

Inheritance, 103
Variable model, 184

T#MAX, 92

T#MIN, 92

Target variable, 113
Task

Assigning programs, 66
Effect on variable initialization, 200

Technology object

Data type, 101
Inheritance, 103

Template

ST source file, 367

Terminals, 73

Test mode, 253, 266
Testing a program, 252
TIME, 91

Time types

Conversions, 141
Functions, 122
Overview, 91

TIME#MAX, 92
TIME#MIN, 92
TIME_OF_DAY, 91
TIME_OF_DAY#MAX, 92
TIME_OF_DAY#MIN, 92
TO#NIL, 102

TOD, 91

TOD#MAX, 92
TOD#MIN, 92

Trace tool, 289
TSl#dwuser_1

Cross-reference list, 238

TSl#dwuser_2

Cross-reference list, 238

TYPE, 95
Type conversion functions, 141
Type declaration, 95

383

Index

U

UDINT, 90
UDINT#MAX, 92
UDINT#MIN, 92
uDT
See User-defined data type, 94
UINT, 90
UINT#MAX, 92
UINT#MIN, 92
Unit
Source file section, 179
Template (example), 367
UNIT, 179
Unit constants
Definition;, 186
Unit variables, 187
Definition, 186
Variable model, 184
USELIB, 170
USEPACKAGE, 170
User-defined data type
Syntax, 95
USES, 170, 171, 181
USINT, 90
USINT#MAX, 92
USINT#MIN, 92

\Y

Value assignments
Description, 113
Syntax, 336

Variable blocks
Syntax, 323

Variables, 105

384

ARRAY, 118
ARRAY, 118
Battery-backed, 188
Declaration, 106

Declaration (source file section), 177

elementary, 114
Enumerator data type, 117
Enumerator data type, 117
Function block, 152
Functions, 152

Hiding validity ranges, 231
Identical names, 231
Initializing, description, 107
Instance declaration of FB, 157
Parameter declaration, 149
Process image, 211, 220
Retentive, 188

static, 189

structured, 118
Temporary, 189

timing of initialization, 200
Validity, 184

Watch tables, 261

w

Warning class, 49, 243
Watch tables, 261
WHILE statement
Description, 136
WORD, 90
Workbench
Elements, 19
Programming environment, 17

SIMOTION ST Structured Text
Programming and Operating Manual, 08/2008

	SIMOTION ST Structured Text
	Safety Guidelines
	Preface
	Contents
	1 Introduction
	1.1 High-level programming language
	1.2 Programming language with technology commands
	1.3 Execution levels
	1.4 ST editor with tools for writing and testing programs

	2 Getting Started with ST
	2.1 Integration of ST in SCOUT
	2.1.1 Getting to know the elements of the workbench

	2.2 Requirements for program creation
	2.3 Working with the ST editor and the compiler
	2.3.1 Insert ST source file
	2.3.2 Opening an existing ST source file
	2.3.3 Changing the properties of an ST source file
	2.3.4 Working with the ST editor
	2.3.4.1 Syntax coloring
	2.3.4.2 Drag&drop
	2.3.4.3 Shortcuts
	2.3.4.4 Settings of the ST editor
	2.3.4.5 Indentations and tabs
	2.3.4.6 Folds (show and hide blocks)
	2.3.4.7 Display spaces and tabs
	2.3.4.8 Changing the font size in the ST editor
	2.3.4.9 Select text
	2.3.4.10 Use bookmarks
	2.3.4.11 Automatic completion
	2.3.4.12 Other help for the ST editor
	2.3.4.13 Using the command library
	2.3.4.14 ST editor toolbar

	2.3.5 Starting the compiler
	2.3.5.1 Help for the error correction

	2.3.6 Making settings for the compiler
	2.3.6.1 Global compiler settings
	2.3.6.2 Local compiler settings
	2.3.6.3 Meaning of warning classes
	2.3.6.4 Display of the compiler options

	2.3.7 Know-how protection for ST source files
	2.3.8 Making preprocessor definitions
	2.3.9 Exporting, importing and printing an ST source file
	2.3.9.1 Exporting an ST source file as a text file (ASCII)
	2.3.9.2 Exporting an ST source file in XML format
	2.3.9.3 Importing a text file (ASCII) as an ST source file
	2.3.9.4 Importing XML data into ST source files
	2.3.9.5 Printing an ST source file

	2.3.10 Using an external editor
	2.3.11 ST source file menus
	2.3.11.1 ST source file menu
	2.3.11.2 ST source file context menu

	2.4 Creating a sample program
	2.4.1 Requirements
	2.4.2 Opening or creating a project
	2.4.3 Making the hardware known
	2.4.4 Entering source text with the ST editor
	2.4.4.1 Functions of the editor
	2.4.4.2 Source text of the sample program

	2.4.5 Compiling a sample program
	2.4.5.1 Starting the compiler
	2.4.5.2 Correcting errors
	2.4.5.3 Example of error messages

	2.4.6 Running the sample program
	2.4.6.1 Assigning a sample program to an execution level
	2.4.6.2 Establishing a connection to the target system
	2.4.6.3 Downloading the sample program to the target system
	2.4.6.4 Starting and testing the sample program

	3 ST Fundamentals
	3.1 Language description resources
	3.1.1 Syntax diagram
	3.1.2 Blocks in syntax diagrams
	3.1.3 Meaning of the rules (semantics)

	3.2 Basic elements of the language
	3.2.1 ST character set
	3.2.2 Identifiers in ST
	3.2.2.1 Rules for identifiers
	3.2.2.2 Examples of identifiers

	3.2.3 Reserved identifiers
	3.2.3.1 Protected identifiers
	3.2.3.2 Additional reserved identifiers

	3.2.4 Numbers and Boolean values
	3.2.4.1 Integers
	3.2.4.2 Floating-point numbers
	3.2.4.3 Exponents
	3.2.4.4 Boolean values
	3.2.4.5 Data types of numbers

	3.2.5 Character strings

	3.3 Structure of an ST source file
	3.3.1 Statements
	3.3.2 Comments

	3.4 Data types
	3.4.1 Elementary data types
	3.4.1.1 Elementary data types
	3.4.1.2 Value range limits of elementary data types
	3.4.1.3 General data types
	3.4.1.4 Elementary system data types

	3.4.2 User-defined data types
	3.4.2.1 User-defined data types
	3.4.2.2 Syntax of user-defined data types (type declaration)
	3.4.2.3 Derivation of elementary or derived data types
	3.4.2.4 Derived data type ARRAY
	3.4.2.5 Derived data type - Enumerator
	3.4.2.6 Derived data type STRUCT (structure)

	3.4.3 Technology object data types
	3.4.3.1 Description of the technology object data types
	3.4.3.2 Inheritance of the properties for axes
	3.4.3.3 Examples of the use of technology object data types

	3.4.4 System data types

	3.5 Variable declaration
	3.5.1 Syntax of variable declaration
	3.5.2 Overview of all variable declarations
	3.5.3 Initialization of variables or data types
	3.5.4 Constants

	3.6 Value assignments and expressions
	3.6.1 Value assignments
	3.6.1.1 Syntax of the value assignment
	3.6.1.2 Value assignments with variables of an elementary data type
	3.6.1.3 Value assignments with variables of the STRING elementary data type
	3.6.1.4 Value assignments with variables of a bit data type
	3.6.1.5 Value assignments with variables of the derived enumerator data type
	3.6.1.6 Value assignments with variables of the derived ARRAY data type
	3.6.1.7 Value assignments with variables of the derived STRUCT data type

	3.6.2 Expressions
	3.6.2.1 Result of an expression
	3.6.2.2 Interpretation order of an expression

	3.6.3 Operands
	3.6.4 Arithmetic expressions
	3.6.4.1 Examples of arithmetic expressions

	3.6.5 Relational expressions
	3.6.6 Logic expressions and bit-serial expressions
	3.6.7 Priority of operators

	3.7 Control statements
	3.7.1 IF statement
	3.7.2 CASE statement
	3.7.3 FOR statement
	3.7.3.1 Processing of the FOR statement
	3.7.3.2 Rules for the FOR statement
	3.7.3.3 Example of the FOR statement

	3.7.4 WHILE statement
	3.7.5 REPEAT statement
	3.7.6 EXIT statement
	3.7.7 RETURN statement
	3.7.8 WAITFORCONDITION statement
	3.7.9 GOTO statement

	3.8 Data type conversions
	3.8.1 Elementary data type conversion
	3.8.1.1 Implicit data type conversions
	3.8.1.2 Explicit data type conversions

	3.8.2 Supplementary conversions

	4 Functions, Function Blocks, and Programs
	4.1 Creating and calling functions and function blocks
	4.1.1 Defining functions
	4.1.2 Defining function blocks
	4.1.3 Declaration section of FB and FC
	4.1.4 Statement section of FB and FC
	4.1.5 Call of functions and function block calls
	4.1.5.1 Principle of parameter transfer
	4.1.5.2 Parameter transfer to input parameters
	4.1.5.3 Parameter transfer to in/out parameters
	4.1.5.4 Parameter transfer to output parameters (for FB only)
	4.1.5.5 Parameter access times
	4.1.5.6 Calling a function
	4.1.5.7 Calling function blocks (instance calls)
	4.1.5.8 Accessing the FB's output parameter outside the FB
	4.1.5.9 Accessing the FB's input parameter outside the FB
	4.1.5.10 Error sources in FB calls

	4.2 Comparison of functions and function blocks
	4.2.1 Description of example
	4.2.2 Source file with comments

	4.3 Programs
	4.4 Expressions

	5 Integration of ST in SIMOTION
	5.1 Source file sections
	5.1.1 Use of the source file sections
	5.1.1.1 Interface section
	5.1.1.2 Implementation section
	5.1.1.3 Program organization units (POUs)
	5.1.1.4 Functions (FCs)
	5.1.1.5 Function blocks (FBs)
	5.1.1.6 Programs
	5.1.1.7 Expressions
	5.1.1.8 Declaration section
	5.1.1.9 Statement section
	5.1.1.10 Data type definition
	5.1.1.11 Variable declaration

	5.1.2 Import and export between ST source files
	5.1.2.1 Unit identifier
	5.1.2.2 Interface section of an exporting unit
	5.1.2.3 Example of an exporting unit
	5.1.2.4 USES statement in an importing unit
	5.1.2.5 Example of an importing unit

	5.2 Variables in SIMOTION
	5.2.1 Variable model
	5.2.1.1 Unit variables
	5.2.1.2 Non-retentive unit variables
	5.2.1.3 Retentive unit variables
	5.2.1.4 Local variables (static and temporary variables)
	5.2.1.5 Static variables
	5.2.1.6 Temporary variables

	5.2.2 Use of global device variables
	5.2.3 Memory ranges of the variable types
	5.2.3.1 Example of memory areas, valid as of Kernel V3.1
	5.2.3.2 Memory requirement of the variables on the local data stack (Kernel V3.1 and higher)
	5.2.3.3 Memory requirement of variables on local data stack (Kernel V3.0 and below)

	5.2.4 Time of the variable initialization
	5.2.4.1 Initialization of retentive global variables
	5.2.4.2 Initialization of non-retentive global variables
	5.2.4.3 Initialization of local variables
	5.2.4.4 Initialization of static program variables
	5.2.4.5 Initialization of instances of function blocks (FBs)
	5.2.4.6 Initialization of system variables of technology objects
	5.2.4.7 Version ID of global variables and their initialization during download

	5.2.5 Variables and HMI devices

	5.3 Access to inputs and outputs (process image, I/O variables)
	5.3.1 Overview of access to inputs and outputs
	5.3.2 Important features of direct access and process image access
	5.3.3 Direct access and process image of cyclic tasks
	5.3.3.1 Rules for I/O addresses for direct access and the process image of the cyclical tasks
	5.3.3.2 Creating I/O variables for direct access or process image of cyclic tasks
	5.3.3.3 Syntax for entering I/O addresses
	5.3.3.4 Possible data types of I/O variables

	5.3.4 Access to fixed process image of the BackgroundTask
	5.3.4.1 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
	5.3.4.2 Syntax for the identifier for an absolute process image access
	5.3.4.3 Symbolic access to the fixed process image of the BackgroundTask (symbolic PI access)
	5.3.4.4 Possible data types for symbolic PI access
	5.3.4.5 Example of symbolic PI access
	5.3.4.6 Creating an I/O variable for access to the fixed process image of the BackgroundTask

	5.3.5 Accessing I/O variables

	5.4 Using libraries
	5.4.1 Compiling a library
	5.4.2 Know-how protection for libraries
	5.4.3 Using data types, functions and function blocks from libraries

	5.5 Use of the same identifiers and namespaces
	5.5.1 Use of the same identifiers
	5.5.2 Namespaces

	5.6 Reference data
	5.6.1 Cross-reference list
	5.6.1.1 Creating a cross-reference list
	5.6.1.2 Content of the cross-reference list
	5.6.1.3 Working with a cross-reference list

	5.6.2 Program structure
	5.6.2.1 Content of the program structure

	5.6.3 Code attributes
	5.6.3.1 Code attribute contents

	5.7 Controlling the preprocessor and compiler with pragmas
	5.7.1 Controlling a preprocessor
	5.7.1.1 Preprocessor statement
	5.7.1.2 Example of preprocessor statements

	5.7.2 Controlling compiler with attributes

	5.8 Jump statement and label

	6 Error Sources and Program Debugging
	6.1 Notes on avoiding errors and on efficient programming
	6.2 Program debugging
	6.2.1 Modes for program testing
	6.2.1.1 Modes of the SIMOTION devices
	6.2.1.2 Important information about the life-sign monitoring
	6.2.1.3 Life-sign monitoring parameters

	6.2.2 Symbol Browser
	6.2.2.1 Properties of the symbol browser
	6.2.2.2 Using the symbol browser

	6.2.3 Monitoring variables in watch table
	6.2.3.1 Variables in the watch table
	6.2.3.2 Using watch tables

	6.2.4 Program run
	6.2.4.1 Program run: Display code location and call path
	6.2.4.2 Parameter call stack program run
	6.2.4.3 Program run toolbar

	6.2.5 Program status
	6.2.5.1 Properties of the program status
	6.2.5.2 Using the status program
	6.2.5.3 Call path for program status
	6.2.5.4 Parameter call path status program

	6.2.6 Breakpoints
	6.2.6.1 General procedure for setting breakpoints
	6.2.6.2 Setting the debug mode
	6.2.6.3 Define the debug task group
	6.2.6.4 Debug task group parameters
	6.2.6.5 Debug table parameter
	6.2.6.6 Setting breakpoints
	6.2.6.7 Breakpoints toolbar
	6.2.6.8 Defining the call path for a single breakpoint
	6.2.6.9 Breakpoint call path / task selection parameters
	6.2.6.10 Defining the call path for all breakpoints
	6.2.6.11 Call path / task selection parameters of all breakpoints per POU
	6.2.6.12 Activating breakpoints
	6.2.6.13 Display call stack
	6.2.6.14 Breakpoints call stack parameter

	6.2.7 Trace

	A Appendix
	A.1 Formal Language Description
	A.1.1 Language description resources
	A.1.2 Basic elements (terminals)
	A.1.3 Rules

	A.2 Compiler Error Messages and Remedies
	A.2.1 File access errors
	A.2.2 Scanner errors
	A.2.3 Declaration errors in POU
	A.2.4 Declaration errors in type declaration
	A.2.5 Declaration errors in variable declarations
	A.2.6 Errors in expression
	A.2.7 Syntax errors, errors in expression
	A.2.8 Error when linking a source file
	A.2.9 Errors while loading the interface of another UNIT or technology package
	A.2.10 Implementation restrictions
	A.2.11 Warnings
	A.2.12 Information

	A.3 Template for Example Unit
	A.3.1 Preliminary information
	A.3.2 Type definition in the interface
	A.3.3 Variable declaration in the interface
	A.3.4 Implementation
	A.3.5 Function
	A.3.6 Function block
	A.3.7 Program
	A.3.8 Notes on initialization

	Index
	k
	#
	*
	/
	:
	_
	+
	<
	=
	>
	1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

